. . .
o " .

[}) PY

e®000 4 0% . B P Lt
L) ° ° ce et L
° 00%e¢ 0% et T e e
.......0..
P a® 6 a

Natalie Parde
UIC CS 421

Vector Semantics

Vector semantics
TF-IDF
Cosine similarity

Thursday
e e |
Tuesday |
Word2Vec

Other dense embeddings
Using word embeddings

Natalie Parde - UIC CS 421 2

Vector Semantics

» Facilitates a form of representation
learning based on the notion that similar
words tend to occur in similar environments

 This notion is known as the distributional
hypothesis, which was first formulated
by linguists in the 1950s

e Joos (1950)
* Harris (1954)
* Firth (1957)

» Self-supervised

Natalie Parde - UIC CS 421

DISTRIBUTIONAL STRUCTURE
ZeLLig S. HARRIS

1. Does language have a distributional structure? For the purposes of the
present discussion, the term structure will be used in the following non-rigorous
sense: A set of phonemes or a set of data is structured in respect to some feature,
to the extent that we can form in terms of that feature some organized system of
statements which describes the members of the set and their interrelations (at
least up to some limit of complexity). In this sense, language can be structured
in respect to various independent features. And whether it is structured (to more
than a trivial extent) in respect to, say, regular historical change, social inter-
course, meaning, or distribution—or to what extent it is structured in any of
these respects—is a matter decidable by investigation. Here we will discuss how
each language can be described in terms of a distributional structure, i.e. in
terms of the occurrence of parts (ultimately sounds) relative to other parts, and
how this description is complete without intrusion of other features such as his-
tory or meaning. It goes without saying that other studies of language—his-
torical, psychological, etc.—are also possible, both in relation to distributional
structure and independently of it.

The distribution of an element will be understood as the sum of all its environ-
ments. An environment of an element A is an existing array of its co-occurrents,
i.e. the other elements, each in a particular position, with which A occurs to
yield an utterance. A’s co-occurrents in a particular position are called its selec-
tion for that position.

1.1. Possibilities of structure for the distributional facts.

To see that there can be a distributional structure we note the following: First,
the parts of a language do not occur arbitrarily relative to each other: each
element occurs in certain positions relative to certain other elements. The peren-
nial man in the street believes that when he speaks he freely puts together what-
ever elements have the meanings he intends; but he does so only by choosing
members of those classes that regularly occur together, and in the order in which
these classes occur.

Second, the restricted distribution of classes persists for all their occurrences;
the restrictions are not disregarded arbitrarily, e.g. for semantic needs. Some
logicians, for example, have considered that an exact distributional description
of natural languages is impossible because of their inherent vagueness. This
is not quite the case. All elements in a language can be grouped into classes whose
relative occurrence can be stated exactly. However, for the occurrence of a
particular member of one class relative to a particular member of another class
it would be necessary to speak in terms of probability, based on the frequency of
that occurrence in a sample.

Third, it is possible to state the occurrence of any element relative to any other
element, to the degree of exactness indicated above, so that distribucional state-

146

https://asa.scitation.org/doi/10.1121/1.1906674
https://www.tandfonline.com/doi/pdf/10.1080/00437956.1954.11659520
http://cs.brown.edu/courses/csci2952d/readings/lecture1-firth.pdf

Vector Semantics

4 For my assignment I’m writing a scathing critique of Dr. Parde’s recent paper.

— ——

For my assignment I'm writing a scathing review of Dr. Parde’s recent pape&

Natalie Parde - UIC CS 421 4

Vector Semantics

For my assignment I'm writing a scathing nhque@f Dr. Parde’s recentp\apem. —
S

\ 1

S o
I
For my assignment I'm writing a scathing)review{of Dr. Parde’s recent paper.

~—_

~~

~

Natalie Parde - UIC CS 421 5

Vector Semantics

N\
For my assignment I'm writing a scathing of Dr. Parde’s recent paper. SyS—
~~

N T -]
~ -
S o 7)
~ - / - i v ———
= - »@ignment I’'m writing a scathinf Dr. Parde’s recm
/ >
, ~__ /
/ N
I o=

N\
; y
110 01001]100110]1 110 101004011001001]

Natalie Parde - UIC CS 421 6

There are many
ways to make
use of the

distributional
hypothesis!

 Classical word vectors
« Bag of words representations and
their variations

 Implicitly learned word vectors
* Word2Vec

* GloVe

 All of these approaches seek to
encode the same linguistic
phenomena observed in studies of
lexical semantics

Lemmas

and
Senses

Lemma: The base form of a word
» Papers — paper
 Mice — mouse

Word Sense: Different aspects of meaning for a word
* Mouse (1): A small rodent
* Mouse (2): A device to control a computer cursor

Words with the same lemma should (hopefully!) reside near one
another in vector space

Words with the same sense might also reside near one another in
vector space, depending on the representation learning technique

IIIIII

Natalie Parde - UIC CS 421

* When a word sense for one word is
(nearly) identical to the word sense for
another word

« Synonymy: Two words are synonymous if
they are substitutable for one another in
any sentence without changing the
situations in which the sentence would be
true

» This means that the words have the
same propositional meaning

For my assignment I’'m writing a scathing critique of Dr.
Parde’s recent paper.

For my assignment I’'m writing a scathing review of Dr.
Parde’s recent paper.

Synonymy

=]

Natalie Parde - UIC CS 421 9

Word Similarity and Relatedness

* Word similarity: Words are not synonyms, but they can
r be used in the same contexts as one another

 Word Relatedness: Words are associated with one

another based on their shared participation in an event lb

Natalie Parde - UIC CS 421

¢3¢

cup

espresso

10

« Semantic Frame: A set of words that denote
perspectives or participants in a particular
type of event

« Commercial Transaction = {buyer, seller,

Semantic goods, money}

Frames « Semantic Role: A participant’s underlying
role with respect to the main verb in the
sentence

Natalie bought five cookies for $5 from Devika.

/ L NN

buyer goods money seller

Natalie Parde - UIC CS 421 11

Connotation

* Also referred to as affective
meaning

» The aspects of a word’s meaning
that are related emotions, sentiment,
opinions, or evaluations

* Valence: Positivity
» High: Happy, satisfied
* Low: Unhappy, annoyed
* Arousal: Intensity of emotion
» High: Excited, frenzied
* Low: Relaxed, calm
+ Dominance: Degree of control

* High: Important,
controlling

e Low: Awed, influenced

Valence Arousal Dominance
courageous 8.05 55 7.38
music 7.67 5.57 6.5
heartbreak 2.45 5.65 3.58 o
cub 6.71 3.95 4.24
life 6.68 5.59 5.89

Word vector! (Osgood et al., 1957)

Natalie Parde - UIC CS 421

12

https://psycnet.apa.org/record/1958-01561-000

« Many, many approaches!
HOW’ then’ « Two classic strategies:
ShOu |d we - Bag of words representations: A word
is a string of letters, or an index in a
represe nt vocabulary list
i 2 - Logical representation: A word defines
meanlng - its own meaning (“dog” = DOG)

Natalie Parde - UIC CS 421 13

« Many, many approaches!
HOW’ then’ « Two classic strategies:
ShOUld we - Bag of words representations: A word
is a string of letters, or an index in a
represe nt vocabulary list
i 2 * Lpgigalkrepyegentatio waond deiNes
meanlng' iJs\evn ning ¢ doy/= ROG)

Natalie Parde - UIC CS 421 14

Bag of words

features
implement a

simple form
of vector
semantics.

 Two words with very similar sets of
contexts (i.e., similar distributions of
neighboring words) are assumed to
have very similar meanings

* We represent this context using vectors

* For bag of words:

» Define a word as a single vector point in an
n-dimensional space, where n = vocabulary
size

* The value stored in a dimension

corresponds to the presence of a context
word in the same sample as the target word/

> 4

Natalie Parde - UIC CS 421 o 15

Example: Context-Based BOW Vector

To earn a Bachelor of Science in Computer
Science degree from UIC, students need to
complete university, college, and department
degree requirements. The Department of
Computer Science degree requirements are
outlined below. Students should consult the
College of Engineering section for additional
degree requirements and college academic
policies.

Context Window = 4

Natalie Parde - UIC CS 421

16

Example: Context-Based BOW Vector

To earn a Bachelor of Science in Computer Context Window = 4
Science degree from UIC, students need to
complete university, college, and department
degree requirements. The Department of
Computer Science degree requirements are
outlined below. Students should consult the
College of Engineering section for additional
degree requirements and college academic
policies.

e e o o))
0 1 1 0 1 1 1 1 0 0 0 1 0 1 0 0

Natalie Parde - UIC CS 421 17

Example: Context-Based BOW Vector

To earn a Bachelor of Science in Computer Context Window = 8
Science degree from UIC, students need to
complete university, college, and department
degree requirements. The Department of
Computer Science degree requirements are
outlined below. Students should consult the
College of Engineering section for additional
degree requirements and college academic
policies.

e e o o))
0 1 1 0 1 2 2 1 1 0 0 1 0 1 1 0

Natalie Parde - UIC CS 421 18

The goal is for
the values in
these vector
representations
to correspond

with dimensions
of meaning.

« Assuming this is the case,

that are semantically
intuitive

Natalie Parde - UIC CS 421

review

Ivalentine’s l

S

The goal is for
the values in
these vector
representations
to correspond

with dimensions
of meaning.

« Assuming this is the case,

we should be able to:
» Cluster vectors into

orm operations
that are semantically
intuitive

Natalie Parde - UIC CS 421

summary

+

analysis

critique

20

Vector semantics

* TF-IDF

Cosine similarity

Thursday
e e |
Tuesday |
Word2Vec

Other dense embeddings
Using word embeddings

Natalie Parde - UIC CS 421 21

Are there
alternatives to
using frequency

in bag-of-words
representations?

* TF-IDF:

« Term Frequency * Inverse Document
Frequency

« Meaning of a word is defined by the counts

of words in the same document, as well as
overall

Natalie Parde - UIC CS 421 o

TF-IDF originated as a tool for —

information retrieval.

As You
* Rows: Words in a vocabulary Like It

* Columns: Documents in a corpus

Julius
Caesar

- I I
TF-IDF originated as a tool for — —

information retrieval.

As You Twelfth
* Rows: Words in a vocabulary Like It Night

* Columns: Documents in a corpus

As You Twelfth Julius HenryV
Like It Night Caesar

Caesar

| “wit” appears 3 times in Henry V |
e EEEEEERE———

Why information
retrieval?

* A common goal in web search is to find
documents that are similar to the search
query

* These documents are likely to have

information that is of interest to the person
performing the search

What is the capital of lllinois?

v

W Wikipedia

https://en.wikipedia.org » wiki » Springfield,_lllinois $

Springfield, lllinois

s the city of the U.S. state

citv's pooulation was 114.394 at the 2020 census. ...

and the seat of Sangamon County. The

Natalie Parde - UIC CS 421

25

In a term-document matrix, rows can be

viewed as word vectors.

« Each dimension
corresponds to a
document

As You Twelfth Julius Henry
Like It Night Caesar V

 \Words with similar
vectors occur in similar
documents

* This is one way to define
term frequency vectors

LS R e e R TR) ee—

Natalie Parde - UIC CS 421 26

In a term-document matrix, rows can be

viewed as word vectors.

good[62,891} mmmmm=————=-
As You Twelfth Julius

4

Like It Night Caesar

battle

Henry V

good

battle [7, 13] fool
(o] o)

_————____—————’

fool [1, 4] wit

3
Lwit 2, 3] e .

Julius Caesar

’—-—--__—_

Natalie Parde - UIC CS 421 27

In a term-document matrix, rows can be

viewed as word vectors.

good [62, 89]

4

As You Twelfth Julius Henry
Like It Night Caesar V

Henry V

battle [7, 13]

—-—-—__-_--_’

fool 1, 4]
Evit [2, 3]

Julius Caesar

Natalie Parde - UIC CS 421 28

* If we use a defined word context window for
vector representations, the columns are also

D |ffe re nt labeled by words
Types of

« Each cell records the number of times the
row (target) word and the column (context)
word co-occur in some context in a training

Context corpus

 This is just like what we saw in the earlier
context-based bag-of-words example!

Natalie Parde - UIC CS 421 29

Another Example Context Window (Size = 4)

» Take each occurrence of a word (e.g., strawberry)
» Count the context words in the four-word spans before and after it

to get a word-word co-occurrence matrix
traditm

is tradifjonally foll a

often mixed, such as strawberry rhubarb pie. Apple pie
er__ perip S and personal _ digial ASoIstants. 1nese . devices . usually

a computer. This includes information available on the internet

« Some words co-occur frequently with
Where does many words, so won’t be very

informative
TF-IDF . the, it, they
epter the * We want to know about words that co-
plctu re? occur frequently with one another, but
less frequently across all texts '

/
7

Natalie Parde - UIC CS 421 o 31

« Term Frequency: The frequency of the
word t in the document d

* tftq = count(t,d)

 Document Frequency: The number of
documents in which the word t occurs

Natalie Parde - UIC CS 421

Computing TF-IDF

* Inverse Document Frequency: The inverse of document frequency, where N is the total
number of documents in the collection

. N
* idfy =4

* IDF is higher when the term occurs in fewer documents
« Document = Whatever is considered an instance or context in your dataset

* It is often useful to perform these computations in log space
* TF:logqo(tftqa+1) — Make sure to smooth so you don't try to take the log of 0!
* |IDF: loglo ldft

Natalie Parde - UIC CS 421 33

Natalie Parde - UIC CS 421

Computing TF*IDF

e TF-IDF combines TF and
IDF

* tfidfiq = tft g Xidf;

Assume we’re looking at a
subset of a 37-document
corpus of Shakespearean

plays....

Example:
Computing
TF-IDF

- TF-IDF(battle, d,) = ?

d,
battle
good 114
fool 36
wit 20

Natalie Parde - UIC CS 421

80

58

15

62

13

89

35

Example:
Computing
TF-IDF

- TF-IDF(battle, d;) = ?
- TF(battle, d) = 1

d, d,
battle 0
good 114 80
fool 36 58
wit 20 15

Natalie Parde - UIC CS 421

62

13

89

36

Example:
Computing
TF-IDF

- TF-IDF(battle, d;) = ?
- TF(battle, d;) = 1

* IDF(battle) = N/DF(battle)
37/121 =1.76

d, d,
battle
good 114
fool 36
wit 20

Overall document frequencies
from our 37 plays

Natalie Parde - UIC CS 421

80

58

battle
good

13

37

Example:
Computing
TF-IDF

TF-IDF(battle, d;) = ?
TF(battle, d;) = 1

IDF(battle) = N/DF (battle) = 37/21

=1.76

TF-IDF(battle, d;) =1 * 1.76 =
1.76

battle 0
good 114 80
fool 36 58
wit 20 15

Natalie Parde - UIC CS 421

62

13

89

38

Example:
Computing
TF-IDF

TF-IDF(battle, d;) = ?
TF(battle, d;) = 1

IDF(battle) = N/DF (battle) = 37/21
=1.76

TF-IDF(battle, d;) = 1 * 1.76 =
1.76

Alternately, TF-IDF(battle, d,) =
10%10(1 ar 1) * log10 1.76 =
0.074

d;
battle
good 114
fool 36
wit 20

Natalie Parde - UIC CS 421

80

58

15

62

13

89

39

Example:
Computing
TF-IDF

TF-IDF(battle, d;) = ?
TF(battle, d;) = 1

IDF(battle) = N/DF (battle) = 37/21

=1.76

TF-IDF(battle, d;) = 1 * 1.76 =
1.76

Alternately, TF-IDF(battle, d;) =
log,0(1+ 1) * log,, 1.76 =0.074

battle 0
good 114 80
fool 36 58
wit 20 15

Natalie Parde - UIC CS 421

62

13

89

40

To convert our
entire term
frequency matrix
to a TF-IDF
matrix, we need
to repeat this
calculation for
each element.

battle
good
fool

wit

0.074

0.000

0.019

0.049

Natalie Parde - UIC CS 421

0.000

0.000

0.021

0.044

0.220

0.000

0.004

0.018

0.280

0.000

0.008

0.022

41

How does the TF-IDF matrix compare
to the original term frequency matrix?

d, d, ds d, d, d, ds d,
battle 1 0 7 13 battle 0.074 0.000 0.220 0.280
good 114 80 62 89 good 0.000 0.000 0.000 0.000
izl 36 58 1 4 fool 0.019 0.021 0.004 0.008
wit 20 15 2 3 wit 0.049 0.044 0.018 0.022

Natalie Parde - UIC CS 421 42

How does the TF-IDF matrix compare
to the original term frequency matrix?

d, d, d; d, d, d, d; d,
battle
1 0 7 13 battle 0.074 0.000 0.220 0.280
—— N
good 114 0.000 0.000
| R ———— A R L L T
fool 36 0.004 0.008
wit
20 0.018 0.022

Occurs in every document ...not important in the overall scheme of things!
Natalie Parde - UIC CS 421 43

How does the TF-IDF matrix compare
to the original term frequency matrix?

d, d, d, dy d, d, d, dy
__ S
battle
1 0.000 0.220 0.280
N o o Ty e A T S R Ry g e N R e e S . U Ry S Ry e R
et 114 good 0.000 0.000 0.000
fool 36 fool 0.021 0.004 0.008
wit 20 0.049 0.044 0.018 0.022

Increases the importance of seeing rarer words like “battle”
Natalle Parde - Uic Co 221 44

Note that TF-IDF
vectors are sparse.

* Many (usually most)
cells have values of 0

« This can make learning
difficult

battle

good

fool

wit

d4

0.1

0.0

0.0

0.0

d2

0.0

0.0

0.0

0.0

ds

0.0

0.0

0.0

0.0

dy

0.0

0.0

0.0

0.0

ds

0.2

0.0

0.0

0.0

de

0.0

0.0

0.0

0.0

d7

0.3

0.0

0.0

0.0

We'll learn
about other
word

representation
techniques
soon!

« However, TF-IDF remains a useful starting
point for vector space models

* TF-IDF vectors are generally used with
feature-based machine learning algorithms
 Logistic Regression
* Naive Bayes

Natalie Parde - UIC CS 421

What we know so far....

- Word vectors: Vectors of numbers used to encode language
« Each vector represents a point in an n-dimensional semantic space

« Simple techniques to create word vectors:
« Co-occurrence frequency (bag of words)
* TF-IDF

1101011000111 000011 07,0101 0]0109010]0[05

Vector semantics

TF-IDF
* Cosine similarity

Thursday
e e |
Tuesday |
Word2Vec

Other dense embeddings
Using word embeddings

Natalie Parde - UIC CS 421 48

We can use these vectors to measure semantic

similarity between words.

» Popular Approach: Cosine similarity

» Based on the dot product from linear
algebra
[] V . W =

Iivzl ViW; = VW1 + UpWy + -+ UyWy

* [ntuition:

« Similar vectors (e.g., large values in the same
dimensions) will have high cosine similarity

» Dissimilar vectors (e.g., zeros or low values in
different dimensions) will have low cosine similarity

Natalie Parde - UIC CS 421 49

Ly SO DIN - 8pled aleleN

Normalized
Dot Product
Cosine

Similarity

* We compute a normalized dot product to avoid
issues related to word frequency

* Non-normalized dot product will be higher for
frequent words, regardless of how similar they are

« We normalize by dividing the dot product by the
lengths of the two vectors

* The cosine similarity metrics between two vectors v
and w can thus be computed as:
VW Z{\Ll VWi

VIIW| — [on 2 [oN .2
i=1 Vi | Xi=1 Wi

« This value ranges between:
» 0 (dissimilar) and 1 (similar) for frequency or TF-
IDF vectors

» -1 (dissimilar) and 1 (similar) for embedding
vectors that may have negative values

e cosine(v,w) =

50

Example: Computing Cosine Similarity

8 2
1683 1670
information 3982 3325

cos(unicorn, information) = ? ‘H 0

Natalie Parde - UIC CS 421 51

Example: Computing Cosine Similarity

8 2
1683 1670
information 3982 3325

. inf ti _ |442,8,2]-[5,3982,3325]
cos(unicorn, information) = V4422+82+22V52+439822+33252 |79

Natalie Parde - UIC CS 421 52

Example: Computing Cosine Similarity

8 2
1683 1670
information 3982 3325

. inf " _ 442%5+8%3982+2+3325
cos(unicorn, information) = V4422+82+22v52+39822+33252 i

Natalie Parde - UIC CS 421 53

Example: Computing Cosine Similarity

8 2
1683 1670
information 3982 3325
442x54+8+x3982+2%x3325

cos(unicorn, information) =

V4422+82+224/524398224+33252

= 0.017

Natalie Parde - UIC CS 421

54

Example: Computing Cosine Similarity

8 2
1683 1670
information 3982 3325
442x54+8+x3982+2%x3325

cos(unicorn, information)

V4422+82+224/524398224+33252

= 0.017

cos(digital, information) =

5%5+1683%3982+1670%3325

= 0.996

V52+16832+16702vV52+39822+33252

Natalie Parde - UIC CS 421

55

Example: Computing Cosine Similarity

8 2
1683 1670
information 3982 3325
. . : 442%5+8%3982+2%3325
cos(unicorn, information) = = 0.017
() V4422+482+224/52+39822+33252

5%5+1683%3982+1670%3325
V52+16832+16702vV52+39822+33252

cos(digital, information) = = 0.996

;e = = = = -
: 0101 0 I ﬁ Result: information is way closer to digital than it is to unicorn!

Natalie Parde - UIC CS 421 56

Representation learning is the act of building or
learning word vectors based on the distributional
hypothesis

This process seeks to encode the same linguistic

n phenomena observed in studies of lexical
S u m m a ry = semantics
I ntrOd u Cti O n Bag-of-words representations are one form of word

vector, and TF-IDF representations are another

tO Ve Ctor TF-IDF representations combine simple term

frequency with inverse document frequency to

Se ma nti CS minimize the impact of words that occur more

frequently in general

The similarity between two vectors can be computed
using cosine similarity

Natalie Parde - UIC CS 421

Vector semantics
TF-IDF
Cosine similarity

Thursday
e e |
Tuesday |
Word2Vec

Other dense embeddings
Using word embeddings

Natalie Parde - UIC CS 421 58

Vector semantics
TF-IDF
Cosine similarity

Thursday
e e
Tuesday |

*WordZVec

Other dense embeddings
Using word embeddings

Natalie Parde - UIC CS 421 59

Limitations
of Bag-of-
Words

Style
Vectors

* Very high-dimensional
* Lots of empty (zero-valued) cells

 Struggle with inferring deeper semantic
content:
¢ Synonyms
« Antonyms
 Positive/negative connotations
» Related contexts

Natalie Parde - UIC CS 421 60

+

- What
would our
“dream

vector”
look like?

» Lower-dimensional (~ 50-1000 cells)
e Easier to include as features

» Classifiers have to learn ~100
weights instead of ~50,000

» Fewer parameters — lower chance
of overfitting

* May generalize better to new
data

* Most dimensions with non-zero values

» We’d also prefer to be able to encode
other semantic dimensions of meaning

e Good should be:
e Far from bad
» Close to great

» For this, we need vector dimensions
to correspond to meaning directly,
rather than specific words

61

Natalie Parde - UIC CS 421

| Enter Word2Vec....

* Word2Vec: A method for
automatically learning
dense word
representations from large
text corpora

oFaSt '..l\..--'
 Efficient to train L LLES

* Not quite a dream vector:
Wordzvec embeddlngS are TSl 12 21 32 43 13 24 52 13 23
static (homonyms have the
same representations)

4

Natalie Parde - UIC CS 421 62

Word2Vec

 Technically a tool for implementing word
vectors:
* https://code.google.com/archive/p/word2vec

* The algorithm that people usually refer to
as Word2Vec is the skip-gram model with
negative sampling

Natalie Parde - UIC CS 421 63

https://code.google.com/archive/p/word2vec

Word2Vec Intuition

* Instead of counting how often each word occurs near each
context word, train a classifier on a binary prediction task
* |s word w likely to occur near context word c¢?

* The twist: We don’t actually care about the classifier!

 We use the learned classifier weights from this prediction task
as our word embeddings

» Text (without any other labels) is
framed as implicitly supervised
training data

» Given the question: Is word w
likely to occur near context word

None of this i
requires > sy

standard answer is “yes”

m a n u a I « Similar setup to neural language
== modeling (neural networks that
supervision.

predict the next word based on prior
words), but simpler:

* Fewer layers

rather than predicting words

* Makes binary yes/no predictions

65

Natalie Parde - UIC CS 421

What does the

classification task

look like?

Train a classifier that, given a tuple (¢, c¢) of
a target word t paired with a context word c (e.g.,
(super, bowl) or (super, laminator)), will return the
probability that c is a real context word

* P(+[tc)

» Context is defined by our context window (in this
case, + 2 words)

this sunday,

watch

ol

the super bowl at 9:30 p.m.
c2 t c3 c4

Natalie Parde - UIC CS 421

66

High-Leve| « Treat the target word w
and a neighboring context

Overview: word ¢ as positive
How samples

Word2Vec

Works

Natalie Parde - UIC CS 421

. _ Treat the target word w
ngh Level and a neighboring context

Overview: word ¢ as positive
How samples

* Randomly sample other
Word2Vec words in the lexicon to get

Works negative samples

Natalie Parde - UIC CS 421

. _ Treat the target word w
ngh Level and a neighboring context

Overview: word ¢ as positive
How

Randomly sample other
Word2Vec words in the lexicon to get

samples

Works negative samples
Train a classifier to

distinguish between those [y |
two cgses |

Natalie Parde - UIC CS 421

High-Leve| Treat the target word w
and a neighboring context

Overview: word ¢ as positive
How

Randomly sample other
Word2Vec words in the lexicon to get

samples

Works negative samples
Train a classifier to

distinguish between those ,
two cgses '
Use the weights from that

classifier as the word
embeddings

Natalie Parde - UIC CS 421

* Represent all words in a
vocabulary as a vector

» Treat the target word w
and a neighboring context

H Ig h-Level word ¢ as positive

Overview: samples
- Randomly sample other

How word? in the Ie>|<icon to get
negative samples
Word2Vec

Works

Use the weights from that
classifier as the word
embeddings

Natalie Parde - UIC CS 421

How do we compute
P(+ | t,c)?

* This is based on vector similarity

* We can assume that vector similarity is proportional to the dot
product between two vectors

 Similarity(t,c) x t - c
* More similar vectors — more likely that ¢ occurs near ¢

Natalie Parde - UIC CS 421 72

A d Ot * How do we turn it into a probability?
« Sigmoid function (just like we did
product ; J

with logistic regression!)
gives us a RS
number, * Then: -

1

nOt a) P(+ | t’C) - 1+e~tC
.y e P(-|tc)=1-P(+ | t,c) = ——
probability.

1+e~tc

Natalie Parde - UIC CS 421

What if we want to
know the probability
that a span of text
occurs in the context
of the target word?

this sunday, watch the super bowl at 5:30 p.m.
cl _, c2 t c3 c4

e 4
1
P(+|t,c) = -)I

P(-lt’c) _ e—t-C

1+e~t¢C

» Simplifying assumption: All context words are independent

» So, we can just multiply their probabilities:
+ P(HtCrx) =TTy T

i=1 1+e_t'ci,

« log P(+|t,c14) = XX, log

1+e b€

Natalie Parde - UIC CS 421 74

at 5:30 p.m.

With this in this sunday, watch the

c1 c2

|
m I n P(+|supery P(+|
H H B E watch) = .7 super,
the) =

5

c4

P(+|

super

at) =
iS5

[P(+ltcr)=.7%5%.9* 5= 1575

« Given t and a context window of k words c¢.,, we can assign a probability based on how

similar the context window is to the target word

* However, we still have some unanswered questions....
 How do we determine our input vectors?

* How do we learn word embeddings throughout this process (this is the real

goal of training our classifier in the first place)?

Natalie Parde - UIC CS 421

75

Input Vectors

» Typically represented as one-hot vectors

« Binary bag-of-words approach: Place a “1” in the position
corresponding to a given word, and a “0” in every other
position

super bowl

Natalie Parde - UIC CS 421 76

Learned Embeddings....

+ Embeddings are the weights learned for a two-layer classifier that predicts

P(+ | tc)
» Recall from our discussion of logistic regression:
cy=ol@= 5=+

1+e~Z2 1+e~Wx+b
» This is quite similar to the probability we're trying to optimize:
. P(+|tc)=—

1+e~tc

Natalie Parde - UIC CS 421 77

What does this look like?

Start with an input ¢

super

What does this look like?

Get the one-hot vector for ¢

-
-
-
-
——————————————
g
‘—
-

: - o o
| -

What does this look like?

: | - o o

Feed it into a layer of n units
(where n is the desired
embedding size), each of
which computes a weighted
sum of inputs

r

(

\

What does this look like?

: | - o o

4 R

Feed the outputs from those
units into a final unit that
predicts whether a word c is
a valid context for t

‘_’ P(+|tc)

What does this look like?

: | - o o

(

‘_’ P(+]tcq)
/‘
— P(+|1c))

‘—’ P(+ | t.cq)
~

| \ ==
Create one of those output |~
units for every possible ¢ — P(+ | t,c,)

Behind the scenes....

—

: | - o o

Each unit in the intermediate
layer applies a specific
weight to each input it
receives

/

z=0*w; +0*xwy + 1% w3 + -+ 0*w,

Behind the scenes....

Since our inputs are one-hot

vectors, this means we’ll end

up with a specific set of

weights (one for each unit)
) for each input word

/’

0
0
1

0

—

ZZO*W1+O*W2+1*W13+"'+0*Wn \

z=0*xw; +0*wp, + 1xwp3 +--+0xw,

z=0%w; +0*xw, +1*wyz3 +--+0x*w,

These are the weights we’re interested In! \/

: | - o o

(

—

z=0*w; +0*w, +1x01+--+0x*w,

| —

—

z=0*xw; +0*xw, +1x07+--+0x*w,

| —

—

z=0*w; +0*w, +1x08+--+0x*w,

| —

—

‘_’ P(+|tcy)
‘_’ P(+[tcy)

— P(+ | tcy)

calendar .2 5 9 => P(+ | t,cy)
coffee 3 3 .8
super A 7 .8
--—\‘ J
globe 4 9 .6 = P(+ | tc
k > 4 - oy Ir./uull'vr.lllullt) (| ’ n)

How do we optimize these
weights over time?

» Weights are initialized to some random value for each word

» They are then iteratively updated to be more similar for words that occur in similar contexts in the
training set, and less similar for words that do not

« Specifically, we want to find weights that maximize P(+|¢,c) for words that occur in similar
contexts and minimize P(+|t,c) for words that do not, given the information we have at the time

Natalie Parde - UIC CS 421 86

Since we initialize
our weights

super

randomly, the
classifier’s first
prediction will
almost certainly be
wrong.

Predicted: 0.9
Actual: 0

P—

Predicted: 0.9 |
Actual: 0 ‘
Error: -0.9 _\

However, the error
values from our
incorrect guesses
are what allow us
to improve our
embeddings over
time.

super

Predicted: 0.9 |
Actual: 0 ‘
Error: -0.9 _\

However, the error
values from our
incorrect guesses
are what allow us
to improve our
embeddings over
time.

super

Adjust the embeddings (weights) for t and
¢4 so if we tried to make these predictions
again, we’'d have lower error values

P—

Predicted: 0.4 |
Actual: 0 ‘
Error: -0.4 _\

However, the error
values from our
incorrect guesses
are what allow us
to improve our
embeddings over
time.

super

B = R I N
c1 c2 t c3 c4

What is Our Positive Examples
training data? o]

super watch
super the
super bowl
super at

» We assume that all occurrences of words in similar contexts in our training corpus are
positive samples

Natalie Parde - UIC CS 421 91

B = R I N
c1 c2 t c3 c4

What is Our Positive Examples
training data? o]

super watch
super the
super bowl
super at

* However, we also need negative samples!

* In fact, Word2Vec uses more negative than positive samples (the exact ratio can vary)
« We need to create our own negative examples

Natalie Parde - UIC CS 421 92

B = R I N
c1 c2 t c3 c4

What iS Our Positive Examples Negative Examples
training data? DN S C—

super calendar
super watch
super exam
super the P
super loud
super bowl
super bread
super at
« How to create negative examples? super cellphone
» Target word + “noise” word that is sampled from the training set super enemy
* Noise words are chosen according to their weighted unigram frequency p, (w), :
where a is a weight: ¢ super penguin
" Pa(W) = et super drive

« Often, @ = 0.75 to give rarer noise words slightly higher probability of
being randomly sampled

» Randomly select noise words according to weighted unigram frequency

Learning Skip-Gram Embeddings

« The model uses these positive and negative samples to:
» Maximize the vector similarity of the (target, context) pairs drawn from positive
examples
* Minimize the vector similarity of the (target, context) pairs drawn from negative
examples
« Parameters (target and context weight vectors) are fine-tuned by:
» Applying stochastic gradient descent
» Optimizing a cross-entropy loss function

What if we want to predict a target word
from a set of context words instead?

B |n general, skip-gram
embeddings are good with:

« Small datasets
« Continuous Bag of Words (CBOW) - Rare words and phrases

 Another variation of Word2Vec i CEOW embeddings are
* Very similar to skip-gram model! good with:

» Larger datasets (faster to train)
* Frequent words

Vector semantics
TF-IDF
Cosine similarity

Thursday
e e |
Tuesday |
Word2Vec

Other dense embeddings
Using word embeddings

Natalie Parde - UIC CS 421 96

Are there any

other variations
of Word2Vec?

e fastText

» An extension of Word2Vec that also
incorporates subwords

» Designed to better handle unknown
words and sparsity in language

Natalie Parde - UIC CS 421

97

fastText

« Each word is represented as:

7 ° ltself

/'« Abag of constituent n-grams ---.
1

[

$ DS
\\\ \\
N S ———————— \\
--~~~
S \
R \/
super{ = <super>| + |<SU,sup,upe, per, eri'

Natalie Parde - UIC CS 421

fastText

» Skip-gram embedding is learned for each constituent
n-gram

» Word is represented by the sum of all embeddings of
its constituent n-grams

» Key advantage of this extension?

» Allows embeddings to be predicted for unknown
words based on subword constituents alone

https://fasttext.cc/

l Source code available online:

Natalie Parde - UIC CS 421 99

https://fasttext.cc/

Other Types of Dense Word
Embeddings

» Word2Vec is an example of a
predictive word embedding model
 Learns to predict whether
words belong in a target word’s
context

e Other models are count-based
« Remember co-occurrence
matrices?

» GloVE combines aspects of both
predictive and count-based models

» Co-occurrence matrices quickly grow
extremely large

Global Vectors « GloVe learns to predict weights in a lower-
dimensional space that correspond to the co-

for Word) occurrence probabilities between words

Representation - Why is this useful?

(GloVe) « Predictive models — black box

» They work, but why?
» GloVe models are easier to interpret

How does GloVe work?

.

————— -y

- — ey
-~

~

_ 123 456 Build a huge word-c?ontext
_ co-occurrence matrix
[T8

Natalie Parde - UIC CS 421 102

How does GloVe work?

\ —
_ 123 456 Build a huge word-gontext
_ co-occurrence matrix
[T8

—————— Scaler biases for t; and c;
/’ NS
/’ \\ *
¢ F_l__
'I ‘\\
~
Define soft constraints for each word pair “-'| w{w; + b; + b; = log X;;
’ A X
Y _\ \N-__-
I \ s
Vector fort; Vector for ¢; Co-occurrence count for tic;

Natalie Parde - UIC CS 421 103

How does GloVe work?

B - 456
., K 789

——---.
Vi~

-
’/

4
/4
L

Build a huge word-context
co-occurrence matrix

Define soft constraints for each word pair

X \
! A
Define a cost function l i ;t—\

i=1j=1

Vv Vv
J= ZZf(Xij)(WiTWj +b; + bj — log X;;)?

Weighting function:

(
f(Xij) =) Xmax
1'

)%

Xij < XMAX

otherwise

Natalie Parde - UIC CS 421

104

How does GloVe work?

V
_ 123 456 Build a huge word-gontext
_ co-occurrence matrix
[. T8

- ..
- bl]
=~

/’ ~

s ~
// Y
[\\\
Define soft constraints for each word pair “—" w{w; + b; + b; = log X;;
//—-NN\\
.) Minimize the cost function to
Define a cost function l i Y ,—-‘—1 learn ideal embedding values
]= ZZf(XU)(WlTW]‘l‘bl‘l‘b]—lOgXl])2 fOI’Wi and Wj
i=1j=1

Natalie Parde - UIC CS 421 105

How does GloVe work?

V
_ 123 456 Build a huge word-gontext
_ co-occurrence matrix
[. T8

o
- -~

-~ R
4 1
4 \
[\\
Define soft constraints for each word pair “—" w{w; + b; + b; = log X;;
) Qo+ o7 [12] 42 [os [or 13] oa [o7 [ss]
22T I
¢ Y
. -‘| ‘\ Minimize the cost function to
Define a cost function l i Y ,—-‘—1 =+ learn ideal embedding values
]= ZZf(XU)(WlTW]‘l‘bl‘l‘b]—lOgXl])2 fOI’Wi and Wj
i=1j=1

Natalie Parde - UIC CS 421 106

 Ratios of co-occurrence probabilities have the
Why d Oes potential to encode word similarities and
differences

G Iove * These similarities and differences are useful

components of meaning

WO rk? » GloVe embeddings perform particularly
- well on analogy tasks

Which is better ...Word2Vec or
GloVe?

* In general, Word2Vec and GloVe produce similar embeddings

* Word2Vec — slower to train but less memory intensive

* GloVe — faster to train but more memory intensive

» Word2Vec and Glove both produce context-independent embeddings

« Contextual embeddings:
« ELMo (Peters et al., 2018; https://www.aclweb.org/anthology/N18-1202/)
« BERT (Devlin et al., 2019; https://www.aclweb.org/anthology/N19-1423/)

https://www.aclweb.org/anthology/N18-1202/
https://www.aclweb.org/anthology/N19-1423/

Vector semantics
TF-IDF
Cosine similarity

Thursday

Tuesday

Word2Vec

Other dense embeddings
%Jsing word embeddings

Natalie Parde - UIC CS 421 109

Evaluating Vector
Models

» Extrinsic Evaluation

* Add the vectors as features in a downstream NLP

task, and see whether and how this changes
performance relative to a baseline model

* Most important evaluation metric for word
embeddings!

* Word embeddings are rarely needed in isolation

« They are almost solely used to boost
performance in downstream tasks

Natalie Parde - UIC CS 421 110

Evaluating Vector
Models

* Intrinsic Evaluation
» Performance at predicting:
« Word similarity
+ Text similarity
* Analogy

Natalie Parde - UIC CS 421 111

Evaluating Performance at
Predicting Word Similarity

« Compute the cosine similarity between vectors for pairs of words

« Compute the correlation between those similarity scores and word similarity ratings for the
same pairs of words manually assigned by humans
» Corpora for doing this:
* WordSim-353
» SimLex-999
* TOEFL Dataset

» Levied is closest in meaning to: (a) imposed, (b) believed, (c) requested, (d)
correlated

Analogy o ©

* We can capture relational meanings in
word embeddings by computing the offsets
between values in the same columns for
different vectors

» Famous examples (Mikolov et al., 2013;
Levy and Goldberg, 2014):
« king - man + woman = queen
 Paris - France + Italy = Rome

Natalie Parde - UIC CS 421 113

Context window size influences
what you learn!

« Shorter context window — more syntactic representations
* Information is from immediately nearby words
» Most similar words tend to be semantically similar words with the same parts of
speech
» Longer context window — more topical representations
* Information can come from longer-distance dependencies

» Most similar words tend to be topically related, but not necessarily similar (e.g.,
diner and eats, rather than spoon and fork)

Word embeddings have
many practical applications.

» Features for text
classification tasks

» Representations for
computational social
science studies

 Studying word
meaning over time

» Studying implicit
associations
between words

Natalie Parde - UIC CS 421 15

Embeddings and Historical Semantics

Compute multiple embedding
spaces, each using only texts —mEmm————TT

broadcast (1850s)
seed

from a specific historical period ‘\
1 sow
1
1
!
Il circulated
broadcast (1900s)
f’ —1
em—— ers
e
7’
,/
,l
/ LS Useful corpora:
/ Project Gutenberg: https://gutenberg.org
,’ Corpus of Historical American English:
4 bbc https://www.english-corpora.org/cohal
broadcast (1990s)

Natalie Parde - UIC CS 421 116

https://gutenberg.org/
https://www.english-corpora.org/coha/

Unfortunately, word embeddings
can also end up reproducing
implicit biases and stereotypes
latent in text.

* Recall: king - man + woman = queen
» Word embeddings trained on news corpora
also produce:

* man - computer programmer + woman =
homemaker

» doctor - father + mother = nurse

 Very problematic for real-world applications
(e.g., CV/resume scoring models)

Natalie Parde - UIC CS 421

Bias and

Embeddings

 Caliskan et al. (2017) identified known, harmful
implicit associations in GloVe embeddings

Unpleasantness
African-American European-American
Names Names

Unpleasantness

Names Common

Names Common
among Younger Adults

among Older Adults

Mathematics
Arts

Natalie Parde - UIC CS 421 118

How do we keep the useful associations
present in word embeddings, but get rid of
the harmful ones?

* Recent research has begun examining ways to
debias word embeddings by:

» Transforming embedding spaces to remove
gender stereotypes but preserve definitional
gender

» Changing training procedures to eliminate these
issues before they arise
* Increasingly active area of study:
* https://facctconference.org

Natalie Parde - UIC CS 421

https://facctconference.org/

LZy SO OIN - 8pied aljeleN

Summary:
Word
Embeddings

Word2Vec is a predictive word embedding approach
that learns word representations by training a classifier to
predict whether a context word should be associated
with a given target word

GloVe is a hybrid predictive and count-based word
embedding approach that learns an optimized, lower-
dimensional version of a co-occurrence matrix

Word embeddings can be evaluated through their
incorporation in other language tasks, and they can be
used to model syntactic and semantic properties of
language over time

Word embeddings may reflect the same biases found in
the data used to train them

