
Vector Semantics Natalie Parde
UIC CS 421

This
Week’s
Topics

Natalie Parde - UIC CS 421 2

Tuesday

Vector semantics
TF-IDF
Cosine similarity

Thursday

Word2Vec
Other dense embeddings
Using word embeddings

Vector Semantics
• Facilitates a form of representation

learning based on the notion that similar
words tend to occur in similar environments

• This notion is known as the distributional
hypothesis, which was first formulated
by linguists in the 1950s

• Joos (1950)
• Harris (1954)
• Firth (1957)

• Self-supervised

Natalie Parde - UIC CS 421 3

https://asa.scitation.org/doi/10.1121/1.1906674
https://www.tandfonline.com/doi/pdf/10.1080/00437956.1954.11659520
http://cs.brown.edu/courses/csci2952d/readings/lecture1-firth.pdf

Vector Semantics

For my assignment I’m writing a scathing critique of Dr. Parde’s recent paper.

For my assignment I’m writing a scathing review of Dr. Parde’s recent paper.

Natalie Parde - UIC CS 421 4

Vector Semantics

For my assignment I’m writing a scathing critique of Dr. Parde’s recent paper.

For my assignment I’m writing a scathing review of Dr. Parde’s recent paper.

Natalie Parde - UIC CS 421 5

Vector Semantics

For my assignment I’m writing a scathing critique of Dr. Parde’s recent paper.

For my assignment I’m writing a scathing review of Dr. Parde’s recent paper.

1 0 0 0 1 1 0 1 0 1 1 0 0 0 1 1 0 1 0 1

Natalie Parde - UIC CS 421 6

There are many
ways to make
use of the
distributional
hypothesis!

• Classical word vectors
• Bag of words representations and

their variations
• Implicitly learned word vectors

• Word2Vec
• GloVe

• All of these approaches seek to
encode the same linguistic
phenomena observed in studies of
lexical semantics

Natalie Parde - UIC CS 421 7

Lemmas
and
Senses

• Lemma: The base form of a word
• Papers → paper
• Mice → mouse

• Word Sense: Different aspects of meaning for a word
• Mouse (1): A small rodent
• Mouse (2): A device to control a computer cursor

• Words with the same lemma should (hopefully!) reside near one
another in vector space

• Words with the same sense might also reside near one another in
vector space, depending on the representation learning technique

Natalie Parde - UIC CS 421 8

1 0 0 0 1 1 0 1 0 1

Synonymy

• When a word sense for one word is
(nearly) identical to the word sense for
another word

• Synonymy: Two words are synonymous if
they are substitutable for one another in
any sentence without changing the
situations in which the sentence would be
true

• This means that the words have the
same propositional meaning

For my assignment I’m writing a scathing critique of Dr.
Parde’s recent paper.

For my assignment I’m writing a scathing review of Dr.
Parde’s recent paper.

Natalie Parde - UIC CS 421 9

Word Similarity and Relatedness

• Word similarity: Words are not synonyms, but they can
be used in the same contexts as one another

• Word Relatedness: Words are associated with one
another based on their shared participation in an event

coffee
cup

espresso
cafe

Natalie Parde - UIC CS 421 10

Natalie grabbed the purple coffee mug.

Natalie grabbed the green coffee mug.

Semantic
Frames

• Semantic Frame: A set of words that denote
perspectives or participants in a particular
type of event

• Commercial Transaction = {buyer, seller,
goods, money}

• Semantic Role: A participant’s underlying
role with respect to the main verb in the
sentence

Natalie bought five cookies for $5 from Devika.

buyer goods money seller

Natalie Parde - UIC CS 421 11

Connotation
• Also referred to as affective

meaning
• The aspects of a word’s meaning

that are related emotions, sentiment,
opinions, or evaluations

• Valence: Positivity
• High: Happy, satisfied
• Low: Unhappy, annoyed

• Arousal: Intensity of emotion
• High: Excited, frenzied
• Low: Relaxed, calm

• Dominance: Degree of control
• High: Important,

controlling
• Low: Awed, influenced

Natalie Parde - UIC CS 421 12

Valence Arousal Dominance

courageous 8.05 5.5 7.38

music 7.67 5.57 6.5

heartbreak 2.45 5.65 3.58

cub 6.71 3.95 4.24

life 6.68 5.59 5.89

Word vector! (Osgood et al., 1957)

https://psycnet.apa.org/record/1958-01561-000

How, then,
should we
represent
meaning?

• Many, many approaches!
• Two classic strategies:

• Bag of words representations: A word
is a string of letters, or an index in a
vocabulary list

• Logical representation: A word defines
its own meaning (“dog” = DOG)

Natalie Parde - UIC CS 421 13

How, then,
should we
represent
meaning?

• Many, many approaches!
• Two classic strategies:

• Bag of words representations: A word
is a string of letters, or an index in a
vocabulary list

• Logical representation: A word defines
its own meaning (“dog” = DOG)

Natalie Parde - UIC CS 421 14

Bag of words
features
implement a
simple form
of vector
semantics.

• Two words with very similar sets of
contexts (i.e., similar distributions of
neighboring words) are assumed to
have very similar meanings

• We represent this context using vectors
• For bag of words:

• Define a word as a single vector point in an
n-dimensional space, where n = vocabulary
size

• The value stored in a dimension
corresponds to the presence of a context
word in the same sample as the target word

Natalie Parde - UIC CS 421 15

Example: Context-Based BOW Vector

Natalie Parde - UIC CS 421 16

To earn a Bachelor of Science in Computer
Science degree from UIC, students need to
complete university, college, and department
degree requirements. The Department of
Computer Science degree requirements are
outlined below. Students should consult the
College of Engineering section for additional
degree requirements and college academic
policies.

Context Window = 4

Example: Context-Based BOW Vector

Natalie Parde - UIC CS 421 17

To earn a Bachelor of Science in Computer
Science degree from UIC, students need to
complete university, college, and department
degree requirements. The Department of
Computer Science degree requirements are
outlined below. Students should consult the
College of Engineering section for additional
degree requirements and college academic
policies.

Context Window = 4

bachelor of science in computer department requirements are … students need complete outlined college below consult engineering

0 1 1 0 1 1 1 1 … 0 0 0 1 0 1 0 0

Example: Context-Based BOW Vector

Natalie Parde - UIC CS 421 18

To earn a Bachelor of Science in Computer
Science degree from UIC, students need to
complete university, college, and department
degree requirements. The Department of
Computer Science degree requirements are
outlined below. Students should consult the
College of Engineering section for additional
degree requirements and college academic
policies.

Context Window = 8

bachelor of science in computer department requirements are … students need complete outlined college below consult engineering

0 1 1 0 1 2 2 1 … 1 0 0 1 0 1 1 0

The goal is for
the values in
these vector
representations
to correspond
with dimensions
of meaning.

• Assuming this is the case,
we should be able to:

• Cluster vectors into
semantic groups

• Perform operations
that are semantically
intuitive

review
critique summary

valentine’s

holi

eid

Natalie Parde - UIC CS 421 19

The goal is for
the values in
these vector
representations
to correspond
with dimensions
of meaning.

• Assuming this is the case,
we should be able to:

• Cluster vectors into
semantic groups

• Perform operations
that are semantically
intuitive analysis

critique

summary

+

=

Natalie Parde - UIC CS 421 20

This
Week’s
Topics

Natalie Parde - UIC CS 421 21

Tuesday

Vector semantics
TF-IDF
Cosine similarity

Thursday

Word2Vec
Other dense embeddings
Using word embeddings

Are there
alternatives to
using frequency
in bag-of-words
representations?

Natalie Parde - UIC CS 421 22

• TF-IDF:
• Term Frequency * Inverse Document

Frequency
• Meaning of a word is defined by the counts

of words in the same document, as well as
overall

TF-IDF originated as a tool for
information retrieval.

• Rows: Words in a vocabulary
• Columns: Documents in a corpus

As You
Like It

Twelfth
Night

Julius
Caesar Henry V

Natalie Parde - UIC CS 421 23

TF-IDF originated as a tool for
information retrieval.

• Rows: Words in a vocabulary
• Columns: Documents in a corpus

As You
Like It

Twelfth
Night

Julius
Caesar Henry V

As You
Like It

Twelfth
Night

Julius
Caesar

Henry V

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

“wit” appears 3 times in Henry V
Natalie Parde - UIC CS 421 24

Why information
retrieval?

• A common goal in web search is to find
documents that are similar to the search
query

• These documents are likely to have
information that is of interest to the person
performing the search

Natalie Parde - UIC CS 421 25

In a term-document matrix, rows can be
viewed as word vectors.

• Each dimension
corresponds to a
document

• Words with similar
vectors occur in similar
documents

• This is one way to define
term frequency vectors

As You
Like It

Twelfth
Night

Julius
Caesar

Henry
V

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

Natalie Parde - UIC CS 421 26

In a term-document matrix, rows can be
viewed as word vectors.

As You
Like It

Twelfth
Night

Julius
Caesar

Henry
V

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

Julius Caesar

H
en

ry
 V

battle [7, 13]

good [62, 89]

fool [1, 4]
wit [2, 3]

Natalie Parde - UIC CS 421 27

In a term-document matrix, rows can be
viewed as word vectors.

As You
Like It

Twelfth
Night

Julius
Caesar

Henry
V

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

Julius Caesar

H
en

ry
 V

battle [7, 13]

good [62, 89]

fool [1, 4]
wit [2, 3]

Natalie Parde - UIC CS 421 28

Different
Types of
Context

• If we use a defined word context window for
vector representations, the columns are also
labeled by words

• Each cell records the number of times the
row (target) word and the column (context)
word co-occur in some context in a training
corpus

• This is just like what we saw in the earlier
context-based bag-of-words example!

Natalie Parde - UIC CS 421 29

Another Example Context Window (Size = 4)

• Take each occurrence of a word (e.g., strawberry)
• Count the context words in the four-word spans before and after it

to get a word-word co-occurrence matrix

is traditionally followed by cherry pie, a traditional dessert

often mixed, such as strawberry rhubarb pie. Apple pie

computer peripherals and personal digital assistants. These devices usually

a computer. This includes information available on the internet

Natalie Parde - UIC CS 421 30

Where does
TF-IDF
enter the
picture?

Natalie Parde - UIC CS 421 31

• Some words co-occur frequently with
many words, so won’t be very
informative

• the, it, they
• We want to know about words that co-

occur frequently with one another, but
less frequently across all texts

TF-IDF
• Term Frequency: The frequency of the

word t in the document d
• 𝑡𝑓#,% = count(𝑡, 𝑑)

• Document Frequency: The number of
documents in which the word t occurs

Natalie Parde - UIC CS 421 32

Computing TF-IDF

• Inverse Document Frequency: The inverse of document frequency, where N is the total
number of documents in the collection

• 𝑖𝑑𝑓! =
"
#$!

• IDF is higher when the term occurs in fewer documents
• Document = Whatever is considered an instance or context in your dataset

• It is often useful to perform these computations in log space
• TF: log%&(𝑡𝑓!,#+1) → Make sure to smooth so you don’t try to take the log of 0!
• IDF: log%& 𝑖𝑑𝑓!

Natalie Parde - UIC CS 421 33

Computing TF*IDF

• TF-IDF combines TF and
IDF

• 𝑡𝑓𝑖𝑑𝑓#,% = 𝑡𝑓#,%×𝑖𝑑𝑓#

34

Example:
Computing

TF-IDF
• TF-IDF(battle, d1) = ?

d1 d2 d3 d4

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

Natalie Parde - UIC CS 421 35

Assume we’re looking at a
subset of a 37-document
corpus of Shakespearean
plays….

• TF-IDF(battle, d1) = ?
• TF(battle, d1) = 1

d1 d2 d3 d4

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

Natalie Parde - UIC CS 421

Example:
Computing

TF-IDF

36

• TF-IDF(battle, d1) = ?
• TF(battle, d1) = 1
• IDF(battle) = N/DF(battle) =

37/21 = 1.76

d1 d2 d3 d4

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

word df
battle 21
good 37
fool 36
wit 34Overall document frequencies

from our 37 plays

Natalie Parde - UIC CS 421

Example:
Computing

TF-IDF

37

• TF-IDF(battle, d1) = ?
• TF(battle, d1) = 1
• IDF(battle) = N/DF(battle) = 37/21

= 1.76
• TF-IDF(battle, d1) = 1 * 1.76 =

1.76

d1 d2 d3 d4

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

Natalie Parde - UIC CS 421

Example:
Computing

TF-IDF

38

• TF-IDF(battle, d1) = ?
• TF(battle, d1) = 1
• IDF(battle) = N/DF(battle) = 37/21

= 1.76
• TF-IDF(battle, d1) = 1 * 1.76 =

1.76
• Alternately, TF-IDF(battle, d1) =
𝒍𝒐𝒈𝟏𝟎(𝟏 + 𝟏) ∗	𝒍𝒐𝒈𝟏𝟎 𝟏. 𝟕𝟔 =
	0.074

d1 d2 d3 d4

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

Natalie Parde - UIC CS 421

Example:
Computing

TF-IDF

39

• TF-IDF(battle, d1) = ?
• TF(battle, d1) = 1
• IDF(battle) = N/DF(battle) = 37/21

= 1.76
• TF-IDF(battle, d1) = 1 * 1.76 =

1.76
• Alternately, TF-IDF(battle, d1) =
𝑙𝑜𝑔#$(1 + 1) ∗	 𝑙𝑜𝑔#$ 1.76 =	0.074

d1 d2 d3 d4

battle 0.074 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

Natalie Parde - UIC CS 421

Example:
Computing

TF-IDF

40

To convert our
entire term
frequency matrix
to a TF-IDF
matrix, we need
to repeat this
calculation for
each element.

d1 d2 d3 d4

battle 0.074 0.000 0.220 0.280

good 0.000 0.000 0.000 0.000

fool 0.019 0.021 0.004 0.008

wit 0.049 0.044 0.018 0.022

Natalie Parde - UIC CS 421 41

How does the TF-IDF matrix compare
to the original term frequency matrix?

d1 d2 d3 d4

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

d1 d2 d3 d4

battle 0.074 0.000 0.220 0.280

good 0.000 0.000 0.000 0.000

fool 0.019 0.021 0.004 0.008

wit 0.049 0.044 0.018 0.022

Natalie Parde - UIC CS 421 42

How does the TF-IDF matrix compare
to the original term frequency matrix?

d1 d2 d3 d4

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

d1 d2 d3 d4

battle 0.074 0.000 0.220 0.280

good 0.000 0.000 0.000 0.000

fool 0.019 0.021 0.004 0.008

wit 0.049 0.044 0.018 0.022

Occurs in every document …not important in the overall scheme of things!
Natalie Parde - UIC CS 421 43

How does the TF-IDF matrix compare
to the original term frequency matrix?

d1 d2 d3 d4

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

d1 d2 d3 d4

battle 0.074 0.000 0.220 0.280

good 0.000 0.000 0.000 0.000

fool 0.019 0.021 0.004 0.008

wit 0.049 0.044 0.018 0.022

Increases the importance of seeing rarer words like “battle”
Natalie Parde - UIC CS 421 44

d1 d2 d3 d4 d5 d6 d7

battle 0.1 0.0 0.0 0.0 0.2 0.0 0.3

good 0.0 0.0 0.0 0.0 0.0 0.0 0.0

fool 0.0 0.0 0.0 0.0 0.0 0.0 0.0

wit 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Natalie Parde - UIC CS 421

Note that TF-IDF
vectors are sparse.

• Many (usually most)
cells have values of 0

• This can make learning
difficult

45

We’ll learn
about other

word
representation

techniques
soon!

• However, TF-IDF remains a useful starting
point for vector space models

• TF-IDF vectors are generally used with
feature-based machine learning algorithms

• Logistic Regression
• Naïve Bayes

46

What we know so far….
• Word vectors: Vectors of numbers used to encode language

• Each vector represents a point in an n-dimensional semantic space

• Simple techniques to create word vectors:
• Co-occurrence frequency (bag of words)
• TF-IDF

1 0 0 1 0 1 1 0 0 1 0.7 0 0 0 0 0.9 0.1 0 0 0.5

Natalie Parde - UIC CS 421 47

This
Week’s
Topics

Natalie Parde - UIC CS 421 48

Tuesday

Vector semantics
TF-IDF
Cosine similarity

Thursday

Word2Vec
Other dense embeddings
Using word embeddings

We can use these vectors to measure semantic
similarity between words.

• Popular Approach: Cosine similarity
• Based on the dot product from linear

algebra
• v . w =
	∑()%" 𝑣(𝑤(=	𝑣%𝑤% + 𝑣*𝑤* +⋯+ 𝑣"𝑤"

• Intuition:
• Similar vectors (e.g., large values in the same

dimensions) will have high cosine similarity
• Dissimilar vectors (e.g., zeros or low values in

different dimensions) will have low cosine similarity

Natalie Parde - UIC CS 421 49

Normalized
Dot Product

= Cosine
Similarity

N
atalie Parde - U

IC
 C

S 421

• We compute a normalized dot product to avoid
issues related to word frequency

• Non-normalized dot product will be higher for
frequent words, regardless of how similar they are

• We normalize by dividing the dot product by the
lengths of the two vectors

• The cosine similarity metrics between two vectors v
and w can thus be computed as:

• cosine v,w = v+w
v |w| =

∑"#$
% ."/"

∑"#$
% ."

& ∑"#$
% /"

&

• This value ranges between:
• 0 (dissimilar) and 1 (similar) for frequency or TF-

IDF vectors
• -1 (dissimilar) and 1 (similar) for embedding

vectors that may have negative values

50

Example: Computing Cosine Similarity
glitter data computer

unicorn 442 8 2
digital 5 1683 1670
information 5 3982 3325

cos(unicorn, information) = ?

Natalie Parde - UIC CS 421 51

Example: Computing Cosine Similarity
glitter data computer

unicorn 442 8 2
digital 5 1683 1670
information 5 3982 3325

cos(unicorn, information) = ;;<,=,< . >,?@=<,??<>
;;<4A=4A<4 >4A?@=<4A??<>4

Natalie Parde - UIC CS 421 52

Example: Computing Cosine Similarity
glitter data computer

unicorn 442 8 2
digital 5 1683 1670
information 5 3982 3325

cos(unicorn, information) = ;;<∗>A=∗?@=<A<∗??<>
;;<4A=4A<4 >4A?@=<4A??<>4

Natalie Parde - UIC CS 421 53

Example: Computing Cosine Similarity
glitter data computer

unicorn 442 8 2
digital 5 1683 1670
information 5 3982 3325

cos(unicorn, information) = ;;<∗>A=∗?@=<A<∗??<>
;;<4A=4A<4 >4A?@=<4A??<>4

= 0.017

Natalie Parde - UIC CS 421 54

Example: Computing Cosine Similarity
glitter data computer

unicorn 442 8 2
digital 5 1683 1670
information 5 3982 3325

cos(unicorn, information) = ;;<∗>A=∗?@=<A<∗??<>
;;<4A=4A<4 >4A?@=<4A??<>4

= 0.017

cos(digital, information) = >∗>ACD=?∗?@=<ACDEF∗??<>
>4ACD=?4ACDEF4 >4A?@=<4A??<>4

= 0.996

Natalie Parde - UIC CS 421 55

Example: Computing Cosine Similarity
glitter data computer

unicorn 442 8 2
digital 5 1683 1670
information 5 3982 3325

cos(unicorn, information) = ;;<∗>A=∗?@=<A<∗??<>
;;<4A=4A<4 >4A?@=<4A??<>4

= 0.017

cos(digital, information) = >∗>ACD=?∗?@=<ACDEF∗??<>
>4ACD=?4ACDEF4 >4A?@=<4A??<>4

= 0.996

Result: information is way closer to digital than it is to unicorn!0101
Natalie Parde - UIC CS 421 56

Summary:
Introduction

to Vector
Semantics

• Representation learning is the act of building or
learning word vectors based on the distributional
hypothesis

• This process seeks to encode the same linguistic
phenomena observed in studies of lexical
semantics

• Bag-of-words representations are one form of word
vector, and TF-IDF representations are another

• TF-IDF representations combine simple term
frequency with inverse document frequency to
minimize the impact of words that occur more
frequently in general

• The similarity between two vectors can be computed
using cosine similarity

57

This
Week’s
Topics

Natalie Parde - UIC CS 421 58

Tuesday

Vector semantics
TF-IDF
Cosine similarity

Thursday

Word2Vec
Other dense embeddings
Using word embeddings

This
Week’s
Topics

Natalie Parde - UIC CS 421 59

Tuesday

Vector semantics
TF-IDF
Cosine similarity

Thursday

Word2Vec
Other dense embeddings
Using word embeddings

Limitations
of Bag-of-
Words
Style
Vectors

• Very high-dimensional
• Lots of empty (zero-valued) cells
• Struggle with inferring deeper semantic

content:
• Synonyms
• Antonyms
• Positive/negative connotations
• Related contexts

Natalie Parde - UIC CS 421 60

What
would our
“dream
vector”
look like?

Enter Word2Vec….

• Word2Vec: A method for
automatically learning
dense word
representations from large
text corpora

• Fast
• Efficient to train

• Not quite a dream vector:
Word2Vec embeddings are
static (homonyms have the
same representations)

Natalie Parde - UIC CS 421 62

bank 1.2 2.1 3.2 4.3 1.3 2.4 5.2 1.3 2.3

bank 1.2 2.1 3.2 4.3 1.3 2.4 5.2 1.3 2.3

Word2Vec

• Technically a tool for implementing word
vectors:

• https://code.google.com/archive/p/word2vec
• The algorithm that people usually refer to

as Word2Vec is the skip-gram model with
negative sampling

Natalie Parde - UIC CS 421 63

https://code.google.com/archive/p/word2vec

Word2Vec Intuition
• Instead of counting how often each word occurs near each

context word, train a classifier on a binary prediction task
• Is word w likely to occur near context word c?

• The twist: We don’t actually care about the classifier!
• We use the learned classifier weights from this prediction task

as our word embeddings

Natalie Parde - UIC CS 421 64

None of this
requires
manual
supervision.

What does the
classification task
look like?

• Goal: Train a classifier that, given a tuple (t, c) of
a target word t paired with a context word c (e.g.,
(super, bowl) or (super, laminator)), will return the
probability that c is a real context word

• P(+ | t,c)
• Context is defined by our context window (in this

case, ± 2 words)

Natalie Parde - UIC CS 421 66

this sunday, watch the super bowl at 5:30 p.m.

c1 c2 t c3 c4

High-Level
Overview:

How
Word2Vec

Works

• Treat the target word w
and a neighboring context
word c as positive
samples

super bowl

Natalie Parde - UIC CS 421 67

High-Level
Overview:

How
Word2Vec

Works

• Treat the target word w
and a neighboring context
word c as positive
samples

• Randomly sample other
words in the lexicon to get
negative samples

super bowl

super very
super fork

super calendar

Natalie Parde - UIC CS 421 68

High-Level
Overview:

How
Word2Vec

Works

• Treat the target word w
and a neighboring context
word c as positive
samples

• Randomly sample other
words in the lexicon to get
negative samples

• Train a classifier to
distinguish between those
two cases

super bowl

super very
super fork

super calendar

?super fork
🙂

☹

Natalie Parde - UIC CS 421 69

High-Level
Overview:

How
Word2Vec

Works

• Treat the target word w
and a neighboring context
word c as positive
samples

• Randomly sample other
words in the lexicon to get
negative samples

• Train a classifier to
distinguish between those
two cases

• Use the weights from that
classifier as the word
embeddings

super bowl

super very
super fork

super calendar

?super fork
🙂

☹

super 0.1 0.5 0.1 0.3

Natalie Parde - UIC CS 421 70

0 1 0 0 0 0 1 06 0 0

0 1 0 0 0

0 1 0 0 0

0 0 0 0 1

1 0 0 0 0

High-Level
Overview:

How
Word2Vec

Works

• Represent all words in a
vocabulary as a vector

• Treat the target word w
and a neighboring context
word c as positive
samples

• Randomly sample other
words in the lexicon to get
negative samples

• Find the similarity for each
(t,c) pair and use this to
calculate P(+|(t,c))

• Train a classifier to
maximize these
probabilities to distinguish
between positive and
negative cases

• Use the weights from that
classifier as the word
embeddings

super bowl

super very
super fork

super calendar

?super fork
🙂

☹

super 0.1 0.5 0.1 0.3

0 0 0 1 0

0 0 1 0 0

0 0 0 1 0

Natalie Parde - UIC CS 421

0 0 1 0 0

71

How do we compute
P(+ | t,c)?

• This is based on vector similarity
• We can assume that vector similarity is proportional to the dot

product between two vectors
• Similarity(t,c) ∝ 𝑡 0 𝑐

• More similar vectors → more likely that c occurs near t

Natalie Parde - UIC CS 421 72

A dot
product
gives us a
number,
not a
probability.

• How do we turn it into a probability?
• Sigmoid function (just like we did

with logistic regression!)
• We can set:

• P(+|t,c) = 5
567!"#$

• Then:
• P(+ | t,c) = 5

567!"#$

• P(- | t,c) = 1 - P(+ | t,c) = 7!"#$

567!"#$

73

What if we want to
know the probability
that a span of text
occurs in the context
of the target word?

• Simplifying assumption: All context words are independent
• So, we can just multiply their probabilities:

• P(+|t,c1:k) = ∏895
: 5

567!"#$%
, or

• log P(+|t,c1:k) = ∑895: log 5
567!"#$%

this sunday, watch the super bowl at 5:30 p.m.
c1 c2 t c3 c4

P(+|t,c) = '
'()!"#$

P(-|t,c) =)!"#$

'()!"#$

Natalie Parde - UIC CS 421 74

With this in
mind….

• Given t and a context window of k words c1:k, we can assign a probability based on how
similar the context window is to the target word

• However, we still have some unanswered questions….
• How do we determine our input vectors?
• How do we learn word embeddings throughout this process (this is the real

goal of training our classifier in the first place)?

this sunday, watch the super bowl at 5:30 p.m.
c1 c2 t c3 c4

P(+|super,
watch) = .7

P(+|
super,
the) =

.5

P(+|super,
bowl) = .9

P(+|
super
at) =

.5

P(+|t,c1:k) = .7 * .5 * .9 * .5 = .1575

Natalie Parde - UIC CS 421 75

Input Vectors

• Typically represented as one-hot vectors
• Binary bag-of-words approach: Place a “1” in the position

corresponding to a given word, and a “0” in every other
position

0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
super bowl

Natalie Parde - UIC CS 421 76

Learned Embeddings….

• Embeddings are the weights learned for a two-layer classifier that predicts
P(+ | t,c)

• Recall from our discussion of logistic regression:
• 𝑦 = 	𝜎 𝑧 = %

%01*+ =
%

%01*,-./0

• This is quite similar to the probability we’re trying to optimize:
• P(+ | t,c) = %

%01*!-1

Natalie Parde - UIC CS 421 77

What does this look like?

super

Start with an input t

Natalie Parde - UIC CS 421 78

What does this look like?

0

0

1

…

0

Get the one-hot vector for t

su
pe

r

Natalie Parde - UIC CS 421 79

What does this look like?

…

Feed it into a layer of n units
(where n is the desired
embedding size), each of
which computes a weighted
sum of inputs0

0

1

…

0

su
pe

r

Natalie Parde - UIC CS 421 80

What does this look like?

…

Feed the outputs from those
units into a final unit that
predicts whether a word c is
a valid context for t

P(+ | t,c)

0

0

1

…

0

su
pe

r

Natalie Parde - UIC CS 421 81

What does this look like?

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)
Create one of those output
units for every possible c

0

0

1

…

0

su
pe

r

Natalie Parde - UIC CS 421 82

Behind the scenes….

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

Each unit in the intermediate
layer applies a specific
weight to each input it
receives

𝑧 = 0 ∗𝑤! +0 ∗𝑤" +1 ∗𝑤# +⋯+0 ∗𝑤$

Natalie Parde - UIC CS 421 83

Behind the scenes….

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

Since our inputs are one-hot
vectors, this means we’ll end
up with a specific set of
weights (one for each unit)
for each input word

𝑧 = 0 ∗𝑤! +0 ∗𝑤" +1 ∗𝑤!# +⋯+0 ∗𝑤$

𝑧 = 0 ∗𝑤! +0 ∗𝑤" +1 ∗𝑤"# +⋯+0 ∗𝑤$

𝑧 = 0 ∗𝑤! +0 ∗𝑤" +1 ∗𝑤$# +⋯+0 ∗𝑤$
Natalie Parde - UIC CS 421 84

These are the weights we’re interested in!

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

𝑧 = 0 ∗𝑤! +0 ∗𝑤" +1 ∗ 0.1 +⋯+0 ∗𝑤$

𝑧 = 0 ∗𝑤! +0 ∗𝑤" +1 ∗ 0.7 +⋯+0 ∗𝑤$

𝑧 = 0 ∗𝑤! +0 ∗𝑤" +1 ∗ 0.8 +⋯+0 ∗𝑤$

P(+|pumpkin, spice)

P(+|pumpkin, elephant)

…

Word w1 w2 … wn

calendar .2 .5 … .9

coffee .3 .3 … .8

super .1 .7 … .8

… … … … …

globe .4 .9 … .6

Natalie Parde - UIC CS 421 85

How do we optimize these
weights over time?

• Weights are initialized to some random value for each word
• They are then iteratively updated to be more similar for words that occur in similar contexts in the

training set, and less similar for words that do not
• Specifically, we want to find weights that maximize P(+|t,c) for words that occur in similar

contexts and minimize P(+|t,c) for words that do not, given the information we have at the time

Natalie Parde - UIC CS 421 86

Since we initialize
our weights
randomly, the
classifier’s first
prediction will
almost certainly be
wrong.

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

Predicted: 0.9
Actual: 0

Natalie Parde - UIC CS 421 87

However, the error
values from our
incorrect guesses
are what allow us
to improve our
embeddings over
time.

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

Predicted: 0.9
Actual: 0
Error: -0.9

Natalie Parde - UIC CS 421 88

However, the error
values from our
incorrect guesses
are what allow us
to improve our
embeddings over
time.

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

Predicted: 0.9
Actual: 0
Error: -0.9

Adjust the embeddings (weights) for t and
c1 so if we tried to make these predictions
again, we’d have lower error values

Natalie Parde - UIC CS 421 89

However, the error
values from our
incorrect guesses
are what allow us
to improve our
embeddings over
time.

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

Predicted: 0.4
Actual: 0
Error: -0.4

Natalie Parde - UIC CS 421 90

What is our
training data?

• We assume that all occurrences of words in similar contexts in our training corpus are
positive samples

this sunday, watch the super bowl at 5:30

c1 c2 t c3 c4

t c
super watch
super the
super bowl
super at

Positive Examples

Natalie Parde - UIC CS 421 91

What is our
training data?

• However, we also need negative samples!
• In fact, Word2Vec uses more negative than positive samples (the exact ratio can vary)
• We need to create our own negative examples

this sunday, watch the super bowl at 5:30

c1 c2 t c3 c4

t c
super watch
super the
super bowl
super at

Positive Examples

Natalie Parde - UIC CS 421 92

What is our
training data?

• How to create negative examples?
• Target word + “noise” word that is sampled from the training set
• Noise words are chosen according to their weighted unigram frequency 𝑝!(𝑤),

where 𝛼 is a weight:
• 𝑝%(𝑤) = count(')!

∑"# count('#)!
	

• Often, 𝛼 = 0.75 to give rarer noise words slightly higher probability of
being randomly sampled

• Randomly select noise words according to weighted unigram frequency

this sunday, watch the super bowl at 5:30

c1 c2 t c3 c4

t c
super watch
super the
super bowl
super at

Positive Examples
t c
super calendar
super exam
super loud
super bread
super cellphone
super enemy
super penguin
super drive

Negative Examples

Natalie Parde - UIC CS 421 93

Learning Skip-Gram Embeddings
• The model uses these positive and negative samples to:

• Maximize the vector similarity of the (target, context) pairs drawn from positive
examples

• Minimize the vector similarity of the (target, context) pairs drawn from negative
examples

• Parameters (target and context weight vectors) are fine-tuned by:
• Applying stochastic gradient descent
• Optimizing a cross-entropy loss function

Natalie Parde - UIC CS 421 94

What if we want to predict a target word
from a set of context words instead?

• Continuous Bag of Words (CBOW)
• Another variation of Word2Vec

• Very similar to skip-gram model!

Natalie Parde - UIC CS 421 95

• Small datasets
• Rare words and phrases

In general, skip-gram
embeddings are good with:

• Larger datasets (faster to train)
• Frequent words

CBOW embeddings are
good with:

This
Week’s
Topics

Natalie Parde - UIC CS 421 96

Tuesday

Vector semantics
TF-IDF
Cosine similarity

Thursday

Word2Vec
Other dense embeddings
Using word embeddings

Are there any
other variations

of Word2Vec?

• fastText
• An extension of Word2Vec that also

incorporates subwords
• Designed to better handle unknown

words and sparsity in language

Natalie Parde - UIC CS 421 97

fastText
• Each word is represented as:

• Itself
• A bag of constituent n-grams

super <super> <su, sup, upe, per, er>= +

Natalie Parde - UIC CS 421 98

fastText
• Skip-gram embedding is learned for each constituent

n-gram
• Word is represented by the sum of all embeddings of

its constituent n-grams

• Key advantage of this extension?
• Allows embeddings to be predicted for unknown

words based on subword constituents alone

Source code available online:
https://fasttext.cc/

Natalie Parde - UIC CS 421 99

https://fasttext.cc/

Other Types of Dense Word
Embeddings

• Word2Vec is an example of a
predictive word embedding model

• Learns to predict whether
words belong in a target word’s
context

• Other models are count-based
• Remember co-occurrence

matrices?
• GloVE combines aspects of both

predictive and count-based models

Natalie Parde - UIC CS 421
100

Global Vectors
for Word
Representation
(GloVe)

• Co-occurrence matrices quickly grow
extremely large

• GloVe learns to predict weights in a lower-
dimensional space that correspond to the co-
occurrence probabilities between words

• Why is this useful?
• Predictive models → black box

• They work, but why?
• GloVe models are easier to interpret

Natalie Parde - UIC CS 421 101

How does GloVe work?
c1 … cn

t1 123 … 456
… … … …
tn 0 … 789

Build a huge word-context
co-occurrence matrix

Natalie Parde - UIC CS 421 102

How does GloVe work?
c1 … cn

t1 123 … 456
… … … …
tn 0 … 789

Build a huge word-context
co-occurrence matrix

Define soft constraints for each word pair 𝑤F
G𝑤H + 𝑏F + 𝑏H = log 𝑋FH

Vector for ti Vector for cj

Scaler biases for ti and cj

Co-occurrence count for ticj

Natalie Parde - UIC CS 421 103

How does GloVe work?
c1 … cn

t1 123 … 456
… … … …
tn 0 … 789

Build a huge word-context
co-occurrence matrix

Define soft constraints for each word pair 𝑤F
G𝑤H + 𝑏F + 𝑏H = log 𝑋FH

Weighting function:

𝑓 𝑋FH = .(
𝑋FH
𝑥IJK

)L , 𝑋FH < 𝑋𝑀𝐴𝑋

1, 	 otherwise

Define a cost function
𝐽 = 	?

FM'

N

?
HM'

N

𝑓(𝑋FH)(𝑤F
G𝑤H + 𝑏F + 𝑏H − log 𝑋FH)O

Natalie Parde - UIC CS 421 104

How does GloVe work?
c1 … cn

t1 123 … 456
… … … …
tn 0 … 789

Build a huge word-context
co-occurrence matrix

Define soft constraints for each word pair 𝑤F
G𝑤H + 𝑏F + 𝑏H = log 𝑋FH

Define a cost function
𝐽 = 	?

FM'

N

?
HM'

N

𝑓(𝑋FH)(𝑤F
G𝑤H + 𝑏F + 𝑏H − log 𝑋FH)O

Minimize the cost function to
learn ideal embedding values
for wi and wj

Natalie Parde - UIC CS 421 105

How does GloVe work?
c1 … cn

t1 123 … 456
… … … …
tn 0 … 789

Build a huge word-context
co-occurrence matrix

Define soft constraints for each word pair 𝑤F
G𝑤H + 𝑏F + 𝑏H = log 𝑋FH

Define a cost function
𝐽 = 	?

FM'

N

?
HM'

N

𝑓(𝑋FH)(𝑤F
G𝑤H + 𝑏F + 𝑏H − log 𝑋FH)O

Minimize the cost function to
learn ideal embedding values
for wi and wj

0.4 0.7 1.2 4.3 0.9 6.7 1.3 0.5 0.7 5.3

Natalie Parde - UIC CS 421 106

Why does
GloVe
work?

• Ratios of co-occurrence probabilities have the
potential to encode word similarities and
differences

• These similarities and differences are useful
components of meaning

• GloVe embeddings perform particularly
well on analogy tasks

Natalie Parde - UIC CS 421
107

Which is better …Word2Vec or
GloVe?
• In general, Word2Vec and GloVe produce similar embeddings
• Word2Vec → slower to train but less memory intensive
• GloVe → faster to train but more memory intensive
• Word2Vec and Glove both produce context-independent embeddings
• Contextual embeddings:

• ELMo (Peters et al., 2018; https://www.aclweb.org/anthology/N18-1202/)
• BERT (Devlin et al., 2019; https://www.aclweb.org/anthology/N19-1423/)

Natalie Parde - UIC CS 421 108

https://www.aclweb.org/anthology/N18-1202/
https://www.aclweb.org/anthology/N19-1423/

This
Week’s
Topics

Natalie Parde - UIC CS 421 109

Tuesday

Vector semantics
TF-IDF
Cosine similarity

Thursday

Word2Vec
Other dense embeddings
Using word embeddings

Evaluating Vector
Models
• Extrinsic Evaluation

• Add the vectors as features in a downstream NLP
task, and see whether and how this changes
performance relative to a baseline model

• Most important evaluation metric for word
embeddings!

• Word embeddings are rarely needed in isolation
• They are almost solely used to boost

performance in downstream tasks

Natalie Parde - UIC CS 421 110

Evaluating Vector
Models
• Intrinsic Evaluation

• Performance at predicting:
• Word similarity
• Text similarity
• Analogy

Natalie Parde - UIC CS 421 111

Evaluating Performance at
Predicting Word Similarity
• Compute the cosine similarity between vectors for pairs of words
• Compute the correlation between those similarity scores and word similarity ratings for the

same pairs of words manually assigned by humans
• Corpora for doing this:

• WordSim-353
• SimLex-999
• TOEFL Dataset

• Levied is closest in meaning to: (a) imposed, (b) believed, (c) requested, (d)
correlated

Natalie Parde - UIC CS 421 112

Analogy

• We can capture relational meanings in
word embeddings by computing the offsets
between values in the same columns for
different vectors

• Famous examples (Mikolov et al., 2013;
Levy and Goldberg, 2014):

• king - man + woman = queen
• Paris - France + Italy = Rome

Natalie Parde - UIC CS 421 113

Context window size influences
what you learn!

• Shorter context window → more syntactic representations
• Information is from immediately nearby words
• Most similar words tend to be semantically similar words with the same parts of

speech
• Longer context window → more topical representations

• Information can come from longer-distance dependencies
• Most similar words tend to be topically related, but not necessarily similar (e.g.,
diner and eats, rather than spoon and fork)

Natalie Parde - UIC CS 421 114

Word embeddings have
many practical applications. • Features for text

classification tasks
• Representations for

computational social
science studies

• Studying word
meaning over time

• Studying implicit
associations
between words

Natalie Parde - UIC CS 421 115

Embeddings and Historical Semantics

broadcast (1850s)

broadcast (1900s)

broadcast (1990s)

spread

sow
seed

sows
scatter

circulated

newspapers

television

radiobbc

Compute multiple embedding
spaces, each using only texts
from a specific historical period

Useful corpora:
Project Gutenberg: https://gutenberg.org
Corpus of Historical American English:
https://www.english-corpora.org/coha/

Natalie Parde - UIC CS 421 116

https://gutenberg.org/
https://www.english-corpora.org/coha/

Unfortunately, word embeddings
can also end up reproducing
implicit biases and stereotypes
latent in text.

• Recall: king - man + woman = queen
• Word embeddings trained on news corpora

also produce:
• man - computer programmer + woman =

homemaker
• doctor - father + mother = nurse

• Very problematic for real-world applications
(e.g., CV/resume scoring models)

Natalie Parde - UIC CS 421 117

Bias and
Embeddings

• Caliskan et al. (2017) identified known, harmful
implicit associations in GloVe embeddings

Natalie Parde - UIC CS 421 118

African-American
Names

European-American
Names

Unpleasantness

Male Names Female Names

Mathematics

Male Names

Arts

Female Names

Names Common
among Older Adults

Names Common
among Younger Adults

Unpleasantness

How do we keep the useful associations
present in word embeddings, but get rid of
the harmful ones?

• Recent research has begun examining ways to
debias word embeddings by:

• Transforming embedding spaces to remove
gender stereotypes but preserve definitional
gender

• Changing training procedures to eliminate these
issues before they arise

• Increasingly active area of study:
• https://facctconference.org

Natalie Parde - UIC CS 421 119

https://facctconference.org/

Summary:
Word

Embeddings

N
atalie Parde - U

IC
 C

S 421

• Word2Vec is a predictive word embedding approach
that learns word representations by training a classifier to
predict whether a context word should be associated
with a given target word

• GloVe is a hybrid predictive and count-based word
embedding approach that learns an optimized, lower-
dimensional version of a co-occurrence matrix

• Word embeddings can be evaluated through their
incorporation in other language tasks, and they can be
used to model syntactic and semantic properties of
language over time

• Word embeddings may reflect the same biases found in
the data used to train them

120

