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This 
Week’s 
Topics
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Tuesday

Vector semantics
TF-IDF
Cosine similarity

Thursday

Word2Vec
Other dense embeddings
Using word embeddings



Vector Semantics
• Facilitates a form of representation 

learning based on the notion that similar 
words tend to occur in similar environments

• This notion is known as the distributional 
hypothesis, which was first formulated 
by linguists in the 1950s

• Joos (1950)
• Harris (1954)
• Firth (1957)

• Self-supervised
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https://asa.scitation.org/doi/10.1121/1.1906674
https://www.tandfonline.com/doi/pdf/10.1080/00437956.1954.11659520
http://cs.brown.edu/courses/csci2952d/readings/lecture1-firth.pdf


Vector Semantics

For my assignment I’m writing a scathing critique of Dr. Parde’s recent paper.

For my assignment I’m writing a scathing review of Dr. Parde’s recent paper.
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Vector Semantics

For my assignment I’m writing a scathing critique of Dr. Parde’s recent paper.

For my assignment I’m writing a scathing review of Dr. Parde’s recent paper.
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There are many 
ways to make 
use of the 
distributional 
hypothesis!

• Classical word vectors
• Bag of words representations and 

their variations
• Implicitly learned word vectors

• Word2Vec
• GloVe

• All of these approaches seek to 
encode the same linguistic 
phenomena observed in studies of 
lexical semantics
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Lemmas 
and 
Senses

• Lemma: The base form of a word
• Papers → paper
• Mice → mouse

• Word Sense: Different aspects of meaning for a word
• Mouse (1): A small rodent
• Mouse (2): A device to control a computer cursor

• Words with the same lemma should (hopefully!) reside near one 
another in vector space

• Words with the same sense might also reside near one another in 
vector space, depending on the representation learning technique
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Synonymy

• When a word sense for one word is 
(nearly) identical to the word sense for 
another word

• Synonymy: Two words are synonymous if 
they are substitutable for one another in 
any sentence without changing the 
situations in which the sentence would be 
true

• This means that the words have the 
same propositional meaning

For my assignment I’m writing a scathing critique of Dr. 
Parde’s recent paper.

For my assignment I’m writing a scathing review of Dr. 
Parde’s recent paper.
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Word Similarity and Relatedness

• Word similarity: Words are not synonyms, but they can 
be used in the same contexts as one another

• Word Relatedness: Words are associated with one 
another based on their shared participation in an event

coffee
cup

espresso
cafe
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Natalie grabbed the purple coffee mug.

Natalie grabbed the green coffee mug.



Semantic 
Frames

• Semantic Frame: A set of words that denote 
perspectives or participants in a particular 
type of event

• Commercial Transaction = {buyer, seller, 
goods, money}

• Semantic Role: A participant’s underlying 
role with respect to the main verb in the 
sentence

Natalie bought five cookies for $5 from Devika.

buyer goods money seller
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Connotation
• Also referred to as affective 

meaning
• The aspects of a word’s meaning 

that are related emotions, sentiment, 
opinions, or evaluations

• Valence: Positivity
• High: Happy, satisfied
• Low: Unhappy, annoyed

• Arousal: Intensity of emotion
• High: Excited, frenzied
• Low: Relaxed, calm

• Dominance: Degree of control
• High: Important, 

controlling
• Low: Awed, influenced
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Valence Arousal Dominance

courageous 8.05 5.5 7.38

music 7.67 5.57 6.5

heartbreak 2.45 5.65 3.58

cub 6.71 3.95 4.24

life 6.68 5.59 5.89

Word vector! (Osgood et al., 1957)

https://psycnet.apa.org/record/1958-01561-000


How, then, 
should we 
represent 
meaning?

• Many, many approaches!
• Two classic strategies:

• Bag of words representations: A word 
is a string of letters, or an index in a 
vocabulary list

• Logical representation: A word defines 
its own meaning (“dog” = DOG)
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How, then, 
should we 
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• Many, many approaches!
• Two classic strategies:

• Bag of words representations: A word 
is a string of letters, or an index in a 
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Bag of words 
features 
implement a 
simple form 
of vector 
semantics.

• Two words with very similar sets of 
contexts (i.e., similar distributions of 
neighboring words) are assumed to 
have very similar meanings

• We represent this context using vectors
• For bag of words:

• Define a word as a single vector point in an 
n-dimensional space, where n = vocabulary 
size

• The value stored in a dimension 
corresponds to the presence of a context 
word in the same sample as the target word
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Example: Context-Based BOW Vector
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To earn a Bachelor of Science in Computer 
Science degree from UIC, students need to 
complete university, college, and department 
degree requirements. The Department of 
Computer Science degree requirements are 
outlined below. Students should consult the 
College of Engineering section for additional 
degree requirements and college academic 
policies.

Context Window = 4



Example: Context-Based BOW Vector
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To earn a Bachelor of Science in Computer 
Science degree from UIC, students need to 
complete university, college, and department 
degree requirements. The Department of 
Computer Science degree requirements are 
outlined below. Students should consult the 
College of Engineering section for additional 
degree requirements and college academic 
policies.

Context Window = 4

bachelor of science in computer department requirements are … students need complete outlined college below consult engineering

0 1 1 0 1 1 1 1 … 0 0 0 1 0 1 0 0



Example: Context-Based BOW Vector
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To earn a Bachelor of Science in Computer 
Science degree from UIC, students need to 
complete university, college, and department 
degree requirements. The Department of 
Computer Science degree requirements are 
outlined below. Students should consult the 
College of Engineering section for additional 
degree requirements and college academic 
policies.

Context Window = 8

bachelor of science in computer department requirements are … students need complete outlined college below consult engineering

0 1 1 0 1 2 2 1 … 1 0 0 1 0 1 1 0



The goal is for 
the values in 
these vector 
representations 
to correspond 
with dimensions 
of meaning.

• Assuming this is the case, 
we should be able to:

• Cluster vectors into 
semantic groups

• Perform operations 
that are semantically 
intuitive

review
critique summary

valentine’s

holi

eid
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The goal is for 
the values in 
these vector 
representations 
to correspond 
with dimensions 
of meaning.

• Assuming this is the case, 
we should be able to:

• Cluster vectors into 
semantic groups

• Perform operations 
that are semantically 
intuitive analysis

critique

summary

+

=
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This 
Week’s 
Topics
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Tuesday

Vector semantics
TF-IDF
Cosine similarity

Thursday

Word2Vec
Other dense embeddings
Using word embeddings



Are there 
alternatives to 
using frequency 
in bag-of-words 
representations?
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• TF-IDF:
• Term Frequency * Inverse Document 

Frequency
• Meaning of a word is defined by the counts 

of words in the same document, as well as 
overall



TF-IDF originated as a tool for 
information retrieval.

• Rows: Words in a vocabulary
• Columns: Documents in a corpus

As You 
Like It

Twelfth 
Night

Julius 
Caesar Henry V
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TF-IDF originated as a tool for 
information retrieval.

• Rows: Words in a vocabulary
• Columns: Documents in a corpus

As You 
Like It

Twelfth 
Night

Julius 
Caesar Henry V

As You 
Like It

Twelfth 
Night

Julius 
Caesar

Henry V

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

“wit” appears 3 times in Henry V
Natalie Parde - UIC CS 421 24



Why information 
retrieval?

• A common goal in web search is to find 
documents that are similar to the search 
query

• These documents are likely to have 
information that is of interest to the person 
performing the search
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In a term-document matrix, rows can be 
viewed as word vectors.

• Each dimension 
corresponds to a 
document

• Words with similar 
vectors occur in similar 
documents

• This is one way to define 
term frequency vectors

As You 
Like It

Twelfth 
Night

Julius 
Caesar

Henry 
V

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3
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In a term-document matrix, rows can be 
viewed as word vectors.

As You 
Like It

Twelfth 
Night

Julius 
Caesar

Henry 
V

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

Julius Caesar

H
en

ry
 V

battle [7, 13]

good [62, 89]

fool [1, 4]
wit [2, 3]
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In a term-document matrix, rows can be 
viewed as word vectors.

As You 
Like It

Twelfth 
Night

Julius 
Caesar

Henry 
V

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

Julius Caesar

H
en

ry
 V
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good [62, 89]
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Different 
Types of 
Context

• If we use a defined word context window for 
vector representations, the columns are also 
labeled by words

• Each cell records the number of times the 
row (target) word and the column (context) 
word co-occur in some context in a training 
corpus

• This is just like what we saw in the earlier 
context-based bag-of-words example!
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Another Example Context Window (Size = 4)

• Take each occurrence of a word (e.g., strawberry)
• Count the context words in the four-word spans before and after it 

to get a word-word co-occurrence matrix

is traditionally followed by cherry pie, a traditional dessert

often mixed, such as strawberry rhubarb pie. Apple pie

computer peripherals and personal digital assistants. These devices usually

a computer. This includes information available on the internet
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Where does 
TF-IDF 
enter the 
picture?

Natalie Parde - UIC CS 421 31

• Some words co-occur frequently with 
many words, so won’t be very 
informative

• the, it, they
• We want to know about words that co-

occur frequently with one another, but 
less frequently across all texts



TF-IDF
• Term Frequency: The frequency of the 

word t in the document d
• 𝑡𝑓#,% = count(𝑡, 𝑑)

• Document Frequency: The number of 
documents in which the word t occurs
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Computing TF-IDF

• Inverse Document Frequency: The inverse of document frequency, where N is the total 
number of documents in the collection

• 𝑖𝑑𝑓! =
"
#$!

• IDF is higher when the term occurs in fewer documents
• Document = Whatever is considered an instance or context in your dataset

• It is often useful to perform these computations in log space
• TF: log%&(𝑡𝑓!,#+1) → Make sure to smooth so you don’t try to take the log of 0!
• IDF: log%& 𝑖𝑑𝑓!
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Computing TF*IDF

• TF-IDF combines TF and 
IDF

• 𝑡𝑓𝑖𝑑𝑓#,% = 𝑡𝑓#,%×𝑖𝑑𝑓#

34



Example: 
Computing 

TF-IDF
• TF-IDF(battle, d1) = ?

d1 d2 d3 d4

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3
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Assume we’re looking at a 
subset of a 37-document 
corpus of Shakespearean 
plays….



• TF-IDF(battle, d1) = ?
• TF(battle, d1) = 1

d1 d2 d3 d4

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

Natalie Parde - UIC CS 421

Example: 
Computing 

TF-IDF

36



• TF-IDF(battle, d1) = ?
• TF(battle, d1) = 1
• IDF(battle) = N/DF(battle) = 

37/21 = 1.76

d1 d2 d3 d4

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

word df
battle 21
good 37
fool 36
wit 34Overall document frequencies 

from our 37 plays

Natalie Parde - UIC CS 421

Example: 
Computing 

TF-IDF
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• TF-IDF(battle, d1) = ?
• TF(battle, d1) = 1
• IDF(battle) = N/DF(battle) = 37/21 

= 1.76
• TF-IDF(battle, d1) = 1 * 1.76 = 

1.76

d1 d2 d3 d4

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3
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Example: 
Computing 

TF-IDF

38



• TF-IDF(battle, d1) = ?
• TF(battle, d1) = 1
• IDF(battle) = N/DF(battle) = 37/21 

= 1.76
• TF-IDF(battle, d1) = 1 * 1.76 = 

1.76
• Alternately, TF-IDF(battle, d1) = 
𝒍𝒐𝒈𝟏𝟎(𝟏 + 𝟏) ∗	𝒍𝒐𝒈𝟏𝟎 𝟏. 𝟕𝟔 =
	0.074

d1 d2 d3 d4

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3
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Example: 
Computing 

TF-IDF
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• TF-IDF(battle, d1) = ?
• TF(battle, d1) = 1
• IDF(battle) = N/DF(battle) = 37/21 

= 1.76
• TF-IDF(battle, d1) = 1 * 1.76 = 

1.76
• Alternately, TF-IDF(battle, d1) = 
𝑙𝑜𝑔#$(1 + 1) ∗	 𝑙𝑜𝑔#$ 1.76 =	0.074

d1 d2 d3 d4

battle 0.074 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3
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Example: 
Computing 

TF-IDF

40



To convert our 
entire term 
frequency matrix 
to a TF-IDF 
matrix, we need 
to repeat this 
calculation for 
each element.

d1 d2 d3 d4

battle 0.074 0.000 0.220 0.280

good 0.000 0.000 0.000 0.000

fool 0.019 0.021 0.004 0.008

wit 0.049 0.044 0.018 0.022
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How does the TF-IDF matrix compare 
to the original term frequency matrix?

d1 d2 d3 d4

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

d1 d2 d3 d4

battle 0.074 0.000 0.220 0.280

good 0.000 0.000 0.000 0.000

fool 0.019 0.021 0.004 0.008

wit 0.049 0.044 0.018 0.022
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How does the TF-IDF matrix compare 
to the original term frequency matrix?

d1 d2 d3 d4

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

d1 d2 d3 d4

battle 0.074 0.000 0.220 0.280

good 0.000 0.000 0.000 0.000

fool 0.019 0.021 0.004 0.008

wit 0.049 0.044 0.018 0.022

Occurs in every document …not important in the overall scheme of things!
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How does the TF-IDF matrix compare 
to the original term frequency matrix?

d1 d2 d3 d4

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3

d1 d2 d3 d4

battle 0.074 0.000 0.220 0.280

good 0.000 0.000 0.000 0.000

fool 0.019 0.021 0.004 0.008

wit 0.049 0.044 0.018 0.022

Increases the importance of seeing rarer words like “battle”
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d1 d2 d3 d4 d5 d6 d7

battle 0.1 0.0 0.0 0.0 0.2 0.0 0.3

good 0.0 0.0 0.0 0.0 0.0 0.0 0.0

fool 0.0 0.0 0.0 0.0 0.0 0.0 0.0

wit 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Natalie Parde - UIC CS 421

Note that TF-IDF 
vectors are sparse.

• Many (usually most) 
cells have values of 0

• This can make learning 
difficult

45



We’ll learn 
about other 

word 
representation 

techniques 
soon!

• However, TF-IDF remains a useful starting 
point for vector space models

• TF-IDF vectors are generally used with 
feature-based machine learning algorithms

• Logistic Regression
• Naïve Bayes

46



What we know so far….
• Word vectors: Vectors of numbers used to encode language

• Each vector represents a point in an n-dimensional semantic space

• Simple techniques to create word vectors:
• Co-occurrence frequency (bag of words)
• TF-IDF

1 0 0 1 0 1 1 0 0 1 0.7 0 0 0 0 0.9 0.1 0 0 0.5
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This 
Week’s 
Topics
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Tuesday

Vector semantics
TF-IDF
Cosine similarity

Thursday

Word2Vec
Other dense embeddings
Using word embeddings



We can use these vectors to measure semantic 
similarity between words.

• Popular Approach: Cosine similarity
• Based on the dot product from linear 

algebra
• v . w =
	∑()%" 𝑣(𝑤( =	𝑣%𝑤% + 𝑣*𝑤* +⋯+ 𝑣"𝑤"

• Intuition:
• Similar vectors (e.g., large values in the same 

dimensions) will have high cosine similarity
• Dissimilar vectors (e.g., zeros or low values in 

different dimensions) will have low cosine similarity
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Normalized 
Dot Product 

= Cosine 
Similarity

N
atalie Parde - U

IC
 C

S 421

• We compute a normalized dot product to avoid 
issues related to word frequency

• Non-normalized dot product will be higher for 
frequent words, regardless of how similar they are

• We normalize by dividing the dot product by the 
lengths of the two vectors

• The cosine similarity metrics between two vectors v 
and w can thus be computed as:

• cosine v,w = v+w
v |w| =

∑"#$
% ."/"

∑"#$
% ."

& ∑"#$
% /"

&

• This value ranges between:
•  0 (dissimilar) and 1 (similar) for frequency or TF-

IDF vectors
• -1 (dissimilar) and 1 (similar) for embedding 

vectors that may have negative values

50



Example: Computing Cosine Similarity
glitter data computer

unicorn 442 8 2
digital 5 1683 1670
information 5 3982 3325

cos(unicorn, information) = ?

Natalie Parde - UIC CS 421 51



Example: Computing Cosine Similarity
glitter data computer

unicorn 442 8 2
digital 5 1683 1670
information 5 3982 3325

cos(unicorn, information) = ;;<,=,< . >,?@=<,??<>
;;<4A=4A<4 >4A?@=<4A??<>4
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Example: Computing Cosine Similarity
glitter data computer

unicorn 442 8 2
digital 5 1683 1670
information 5 3982 3325

cos(unicorn, information) = ;;<∗>A=∗?@=<A<∗??<>
;;<4A=4A<4 >4A?@=<4A??<>4
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Example: Computing Cosine Similarity
glitter data computer

unicorn 442 8 2
digital 5 1683 1670
information 5 3982 3325

cos(unicorn, information) = ;;<∗>A=∗?@=<A<∗??<>
;;<4A=4A<4 >4A?@=<4A??<>4

= 0.017
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Example: Computing Cosine Similarity
glitter data computer

unicorn 442 8 2
digital 5 1683 1670
information 5 3982 3325

cos(unicorn, information) = ;;<∗>A=∗?@=<A<∗??<>
;;<4A=4A<4 >4A?@=<4A??<>4

= 0.017

cos(digital, information) = >∗>ACD=?∗?@=<ACDEF∗??<>
>4ACD=?4ACDEF4 >4A?@=<4A??<>4

= 0.996
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Example: Computing Cosine Similarity
glitter data computer

unicorn 442 8 2
digital 5 1683 1670
information 5 3982 3325

cos(unicorn, information) = ;;<∗>A=∗?@=<A<∗??<>
;;<4A=4A<4 >4A?@=<4A??<>4

= 0.017

cos(digital, information) = >∗>ACD=?∗?@=<ACDEF∗??<>
>4ACD=?4ACDEF4 >4A?@=<4A??<>4

= 0.996

Result: information is way closer to digital than it is to unicorn!0101
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Summary: 
Introduction 

to Vector 
Semantics

• Representation learning is the act of building or 
learning word vectors based on the distributional 
hypothesis

• This process seeks to encode the same linguistic 
phenomena observed in studies of lexical 
semantics

• Bag-of-words representations are one form of word 
vector, and TF-IDF representations are another

• TF-IDF representations combine simple term 
frequency with inverse document frequency to 
minimize the impact of words that occur more 
frequently in general

• The similarity between two vectors can be computed 
using cosine similarity

57



This 
Week’s 
Topics

Natalie Parde - UIC CS 421 58

Tuesday

Vector semantics
TF-IDF
Cosine similarity

Thursday

Word2Vec
Other dense embeddings
Using word embeddings



This 
Week’s 
Topics
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Tuesday

Vector semantics
TF-IDF
Cosine similarity

Thursday

Word2Vec
Other dense embeddings
Using word embeddings



Limitations 
of Bag-of-
Words 
Style 
Vectors

• Very high-dimensional
• Lots of empty (zero-valued) cells
• Struggle with inferring deeper semantic 

content:
• Synonyms
• Antonyms
• Positive/negative connotations
• Related contexts
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What 
would our 
“dream 
vector” 
look like?



Enter Word2Vec….

• Word2Vec: A method for 
automatically learning 
dense word 
representations from large 
text corpora

• Fast
• Efficient to train

• Not quite a dream vector: 
Word2Vec embeddings are 
static (homonyms have the 
same representations)
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bank 1.2 2.1 3.2 4.3 1.3 2.4 5.2 1.3 2.3

bank 1.2 2.1 3.2 4.3 1.3 2.4 5.2 1.3 2.3



Word2Vec

• Technically a tool for implementing word 
vectors: 

• https://code.google.com/archive/p/word2vec
• The algorithm that people usually refer to 

as Word2Vec is the skip-gram model with 
negative sampling

Natalie Parde - UIC CS 421 63

https://code.google.com/archive/p/word2vec


Word2Vec Intuition
• Instead of counting how often each word occurs near each 

context word, train a classifier on a binary prediction task
• Is word w likely to occur near context word c?

• The twist: We don’t actually care about the classifier!
• We use the learned classifier weights from this prediction task 

as our word embeddings
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None of this 
requires 
manual 
supervision.



What does the 
classification task 
look like? 

• Goal: Train a classifier that, given a tuple (t, c) of 
a target word t paired with a context word c (e.g., 
(super, bowl) or (super, laminator)), will return the 
probability that c is a real context word

• P(+ | t,c)
• Context is defined by our context window (in this 

case, ± 2 words)

Natalie Parde - UIC CS 421 66

this sunday, watch the super bowl at 5:30 p.m.

c1 c2 t c3 c4



High-Level 
Overview: 

How 
Word2Vec 

Works

• Treat the target word w 
and a neighboring context 
word c as positive 
samples

super bowl
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High-Level 
Overview: 

How 
Word2Vec 

Works

• Treat the target word w 
and a neighboring context 
word c as positive 
samples

• Randomly sample other 
words in the lexicon to get 
negative samples

super bowl

super very
super fork

super calendar

Natalie Parde - UIC CS 421 68



High-Level 
Overview: 

How 
Word2Vec 

Works

• Treat the target word w 
and a neighboring context 
word c as positive 
samples

• Randomly sample other 
words in the lexicon to get 
negative samples

• Train a classifier to 
distinguish between those 
two cases

super bowl

super very
super fork

super calendar

?super fork
🙂

☹
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High-Level 
Overview: 

How 
Word2Vec 

Works

• Treat the target word w 
and a neighboring context 
word c as positive 
samples

• Randomly sample other 
words in the lexicon to get 
negative samples

• Train a classifier to 
distinguish between those 
two cases

• Use the weights from that 
classifier as the word 
embeddings

super bowl

super very
super fork

super calendar

?super fork
🙂

☹

super 0.1 0.5 0.1 0.3
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0 1 0 0 0 0 1 06 0 0

0 1 0 0 0

0 1 0 0 0

0 0 0 0 1

1 0 0 0 0

High-Level 
Overview: 

How 
Word2Vec 

Works

• Represent all words in a 
vocabulary as a vector

• Treat the target word w 
and a neighboring context 
word c as positive 
samples

• Randomly sample other 
words in the lexicon to get 
negative samples

• Find the similarity for each 
(t,c) pair and use this to 
calculate P(+|(t,c))

• Train a classifier to 
maximize these 
probabilities to distinguish 
between positive and 
negative cases

• Use the weights from that 
classifier as the word 
embeddings

super bowl

super very
super fork

super calendar

?super fork
🙂

☹

super 0.1 0.5 0.1 0.3

0 0 0 1 0

0 0 1 0 0

0 0 0 1 0
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How do we compute 
P(+ | t,c)?

• This is based on vector similarity
• We can assume that vector similarity is proportional to the dot 

product between two vectors
• Similarity(t,c) ∝ 𝑡 0 𝑐

• More similar vectors → more likely that c occurs near t
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A dot 
product 
gives us a 
number, 
not a 
probability.

• How do we turn it into a probability?
• Sigmoid function (just like we did 

with logistic regression!)
• We can set:

• P(+|t,c) = 5
567!"#$

• Then:
• P(+ | t,c) = 5

567!"#$

• P(- | t,c) = 1 - P(+ | t,c) = 7!"#$

567!"#$
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What if we want to 
know the probability 
that a span of text 
occurs in the context 
of the target word?

• Simplifying assumption: All context words are independent
• So, we can just multiply their probabilities:

• P(+|t,c1:k) = ∏895
: 5

567!"#$%
, or

• log P(+|t,c1:k) = ∑895: log 5
567!"#$%

this sunday, watch the super bowl at 5:30 p.m.
c1 c2 t c3 c4

P(+|t,c) = '
'()!"#$

P(-|t,c) = )!"#$

'()!"#$
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With this in 
mind….

• Given t and a context window of k words c1:k, we can assign a probability based on how 
similar the context window is to the target word

• However, we still have some unanswered questions….
• How do we determine our input vectors? 
• How do we learn word embeddings throughout this process (this is the real 

goal of training our classifier in the first place)?

this sunday, watch the super bowl at 5:30 p.m.
c1 c2 t c3 c4

P(+|super, 
watch) = .7

P(+|
super, 
the) = 

.5

P(+|super, 
bowl) = .9

P(+|
super 
at) = 

.5

P(+|t,c1:k) = .7 * .5 * .9 * .5 = .1575
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Input Vectors

• Typically represented as one-hot vectors
• Binary bag-of-words approach: Place a “1” in the position 

corresponding to a given word, and a “0” in every other 
position

0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
super bowl
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Learned Embeddings….

• Embeddings are the weights learned for a two-layer classifier that predicts 
P(+ | t,c)

• Recall from our discussion of logistic regression:
• 𝑦 = 	𝜎 𝑧 = %

%01*+ =
%

%01*,-./0

• This is quite similar to the probability we’re trying to optimize:
• P(+ | t,c) = %

%01*!-1
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What does this look like?

super

Start with an input t
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What does this look like?

0

0

1

…

0

Get the one-hot vector for t

su
pe

r
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What does this look like?

…

Feed it into a layer of n units 
(where n is the desired 
embedding size), each of 
which computes a weighted 
sum of inputs0

0

1

…

0

su
pe

r
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What does this look like?

…

Feed the outputs from those 
units into a final unit that 
predicts whether a word c is 
a valid context for t

P(+ | t,c)

0

0

1

…

0

su
pe

r
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What does this look like?

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)
Create one of those output 
units for every possible c

0

0

1

…

0

su
pe

r
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Behind the scenes….

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

Each unit in the intermediate 
layer applies a specific 
weight to each input it 
receives

𝑧 = 0 ∗𝑤! +0 ∗𝑤" +1 ∗𝑤# +⋯+0 ∗𝑤$
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Behind the scenes….

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

Since our inputs are one-hot 
vectors, this means we’ll end 
up with a specific set of 
weights (one for each unit) 
for each input word

𝑧 = 0 ∗𝑤! +0 ∗𝑤" +1 ∗𝑤!# +⋯+0 ∗𝑤$

𝑧 = 0 ∗𝑤! +0 ∗𝑤" +1 ∗𝑤"# +⋯+0 ∗𝑤$

𝑧 = 0 ∗𝑤! +0 ∗𝑤" +1 ∗𝑤$# +⋯+0 ∗𝑤$
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These are the weights we’re interested in!

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

𝑧 = 0 ∗𝑤! +0 ∗𝑤" +1 ∗ 0.1 +⋯+0 ∗𝑤$

𝑧 = 0 ∗𝑤! +0 ∗𝑤" +1 ∗ 0.7 +⋯+0 ∗𝑤$

𝑧 = 0 ∗𝑤! +0 ∗𝑤" +1 ∗ 0.8 +⋯+0 ∗𝑤$

P(+|pumpkin, spice)

P(+|pumpkin, elephant)

…

Word w1 w2 … wn

calendar .2 .5 … .9

coffee .3 .3 … .8

super .1 .7 … .8

… … … … …

globe .4 .9 … .6
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How do we optimize these 
weights over time?

• Weights are initialized to some random value for each word
• They are then iteratively updated to be more similar for words that occur in similar contexts in the 

training set, and less similar for words that do not
• Specifically, we want to find weights that maximize P(+|t,c) for words that occur in similar 

contexts and minimize P(+|t,c) for words that do not, given the information we have at the time
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Since we initialize 
our weights 
randomly, the 
classifier’s first 
prediction will 
almost certainly be 
wrong.

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

Predicted: 0.9
Actual: 0

Natalie Parde - UIC CS 421 87



However, the error 
values from our 
incorrect guesses 
are what allow us 
to improve our 
embeddings over 
time.

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

Predicted: 0.9
Actual: 0
Error: -0.9
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However, the error 
values from our 
incorrect guesses 
are what allow us 
to improve our 
embeddings over 
time.

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

Predicted: 0.9
Actual: 0
Error: -0.9

Adjust the embeddings (weights) for t and 
c1 so if we tried to make these predictions 
again, we’d have lower error values
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However, the error 
values from our 
incorrect guesses 
are what allow us 
to improve our 
embeddings over 
time.

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

Predicted: 0.4
Actual: 0
Error: -0.4
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What is our 
training data?

• We assume that all occurrences of words in similar contexts in our training corpus are 
positive samples

this sunday, watch the super bowl at 5:30

c1 c2 t c3 c4

t c
super watch
super the
super bowl
super at

Positive Examples
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What is our 
training data?

• However, we also need negative samples!
• In fact, Word2Vec uses more negative than positive samples (the exact ratio can vary)
• We need to create our own negative examples

this sunday, watch the super bowl at 5:30

c1 c2 t c3 c4

t c
super watch
super the
super bowl
super at

Positive Examples
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What is our 
training data?

• How to create negative examples?
• Target word + “noise” word that is sampled from the training set
• Noise words are chosen according to their weighted unigram frequency 𝑝!(𝑤), 

where 𝛼 is a weight:
• 𝑝%(𝑤) = count(')!

∑"# count('#)!
	

• Often, 𝛼 = 0.75 to give rarer noise words slightly higher probability of 
being randomly sampled

• Randomly select noise words according to weighted unigram frequency

this sunday, watch the super bowl at 5:30

c1 c2 t c3 c4

t c
super watch
super the
super bowl
super at

Positive Examples
t c
super calendar
super exam
super loud
super bread
super cellphone
super enemy
super penguin
super drive

Negative Examples
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Learning Skip-Gram Embeddings
• The model uses these positive and negative samples to:

• Maximize the vector similarity of the (target, context) pairs drawn from positive 
examples

• Minimize the vector similarity of the (target, context) pairs drawn from negative 
examples

• Parameters (target and context weight vectors) are fine-tuned by:
• Applying stochastic gradient descent
• Optimizing a cross-entropy loss function
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What if we want to predict a target word 
from a set of context words instead?

• Continuous Bag of Words (CBOW)
• Another variation of Word2Vec

• Very similar to skip-gram model!
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• Small datasets
• Rare words and phrases

In general, skip-gram 
embeddings are good with:

• Larger datasets (faster to train)
• Frequent words

CBOW embeddings are 
good with:



This 
Week’s 
Topics
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Tuesday

Vector semantics
TF-IDF
Cosine similarity

Thursday

Word2Vec
Other dense embeddings
Using word embeddings



Are there any 
other variations 

of Word2Vec?

• fastText
• An extension of Word2Vec that also 

incorporates subwords
• Designed to better handle unknown 

words and sparsity in language
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fastText
• Each word is represented as:

• Itself
• A bag of constituent n-grams

super <super> <su, sup, upe, per, er>= +
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fastText
• Skip-gram embedding is learned for each constituent 

n-gram
• Word is represented by the sum of all embeddings of 

its constituent n-grams

• Key advantage of this extension?
• Allows embeddings to be predicted for unknown 

words based on subword constituents alone

Source code available online: 
https://fasttext.cc/
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Other Types of Dense Word 
Embeddings

• Word2Vec is an example of a 
predictive word embedding model

• Learns to predict whether 
words belong in a target word’s 
context

• Other models are count-based
• Remember co-occurrence 

matrices?
• GloVE combines aspects of both 

predictive and count-based models

Natalie Parde - UIC CS 421
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Global Vectors 
for Word 
Representation 
(GloVe)

• Co-occurrence matrices quickly grow 
extremely large

• GloVe learns to predict weights in a lower-
dimensional space that correspond to the co-
occurrence probabilities between words

• Why is this useful?
• Predictive models → black box

• They work, but why?
• GloVe models are easier to interpret
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How does GloVe work?
c1 … cn

t1 123 … 456
… … … …
tn 0 … 789

Build a huge word-context 
co-occurrence matrix
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How does GloVe work?
c1 … cn

t1 123 … 456
… … … …
tn 0 … 789

Build a huge word-context 
co-occurrence matrix

Define soft constraints for each word pair 𝑤F
G𝑤H + 𝑏F + 𝑏H = log 𝑋FH

Vector for ti Vector for cj

Scaler biases for ti and cj

Co-occurrence count for ticj
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How does GloVe work?
c1 … cn

t1 123 … 456
… … … …
tn 0 … 789

Build a huge word-context 
co-occurrence matrix

Define soft constraints for each word pair 𝑤F
G𝑤H + 𝑏F + 𝑏H = log 𝑋FH

Weighting function:

𝑓 𝑋FH = .(
𝑋FH
𝑥IJK

)L , 𝑋FH < 𝑋𝑀𝐴𝑋

1, 	 otherwise

Define a cost function
𝐽 = 	?

FM'

N

?
HM'

N

𝑓(𝑋FH)(𝑤F
G𝑤H + 𝑏F + 𝑏H − log 𝑋FH 	)O
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How does GloVe work?
c1 … cn

t1 123 … 456
… … … …
tn 0 … 789

Build a huge word-context 
co-occurrence matrix

Define soft constraints for each word pair 𝑤F
G𝑤H + 𝑏F + 𝑏H = log 𝑋FH

Define a cost function
𝐽 = 	?

FM'

N

?
HM'

N

𝑓(𝑋FH)(𝑤F
G𝑤H + 𝑏F + 𝑏H − log 𝑋FH 	)O

Minimize the cost function to 
learn ideal embedding values 
for wi and wj
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How does GloVe work?
c1 … cn

t1 123 … 456
… … … …
tn 0 … 789

Build a huge word-context 
co-occurrence matrix

Define soft constraints for each word pair 𝑤F
G𝑤H + 𝑏F + 𝑏H = log 𝑋FH

Define a cost function
𝐽 = 	?

FM'

N

?
HM'

N

𝑓(𝑋FH)(𝑤F
G𝑤H + 𝑏F + 𝑏H − log 𝑋FH 	)O

Minimize the cost function to 
learn ideal embedding values 
for wi and wj

0.4 0.7 1.2 4.3 0.9 6.7 1.3 0.5 0.7 5.3
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Why does 
GloVe 
work?

• Ratios of co-occurrence probabilities have the 
potential to encode word similarities and 
differences

• These similarities and differences are useful 
components of meaning

• GloVe embeddings perform particularly 
well on analogy tasks

Natalie Parde - UIC CS 421
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Which is better …Word2Vec or 
GloVe?
• In general, Word2Vec and GloVe produce similar embeddings
• Word2Vec → slower to train but less memory intensive
• GloVe → faster to train but more memory intensive
• Word2Vec and Glove both produce context-independent embeddings
• Contextual embeddings:

• ELMo (Peters et al., 2018; https://www.aclweb.org/anthology/N18-1202/)
• BERT (Devlin et al., 2019; https://www.aclweb.org/anthology/N19-1423/)
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This 
Week’s 
Topics
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Tuesday

Vector semantics
TF-IDF
Cosine similarity

Thursday

Word2Vec
Other dense embeddings
Using word embeddings



Evaluating Vector 
Models
• Extrinsic Evaluation

• Add the vectors as features in a downstream NLP 
task, and see whether and how this changes 
performance relative to a baseline model

• Most important evaluation metric for word 
embeddings!

• Word embeddings are rarely needed in isolation
• They are almost solely used to boost 

performance in downstream tasks
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Evaluating Vector 
Models
• Intrinsic Evaluation

• Performance at predicting:
• Word similarity
• Text similarity
• Analogy
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Evaluating Performance at 
Predicting Word Similarity
• Compute the cosine similarity between vectors for pairs of words
• Compute the correlation between those similarity scores and word similarity ratings for the 

same pairs of words manually assigned by humans
• Corpora for doing this:

• WordSim-353
• SimLex-999
• TOEFL Dataset

• Levied is closest in meaning to: (a) imposed, (b) believed, (c) requested, (d) 
correlated
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Analogy

• We can capture relational meanings in 
word embeddings by computing the offsets 
between values in the same columns for 
different vectors

• Famous examples (Mikolov et al., 2013; 
Levy and Goldberg, 2014):

• king - man + woman = queen
• Paris - France + Italy = Rome
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Context window size influences 
what you learn!

• Shorter context window → more syntactic representations
• Information is from immediately nearby words
• Most similar words tend to be semantically similar words with the same parts of 

speech
• Longer context window → more topical representations

• Information can come from longer-distance dependencies
• Most similar words tend to be topically related, but not necessarily similar (e.g., 
diner and eats, rather than spoon and fork)

Natalie Parde - UIC CS 421 114



Word embeddings have 
many practical applications. • Features for text 

classification tasks
• Representations for 

computational social 
science studies

• Studying word 
meaning over time

• Studying implicit 
associations 
between words
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Embeddings and Historical Semantics

broadcast (1850s)

broadcast (1900s)

broadcast (1990s)

spread

sow
seed

sows
scatter

circulated

newspapers

television

radiobbc

Compute multiple embedding 
spaces, each using only texts 
from a specific historical period

Useful corpora:
Project Gutenberg: https://gutenberg.org
Corpus of Historical American English: 
https://www.english-corpora.org/coha/
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Unfortunately, word embeddings 
can also end up reproducing 
implicit biases and stereotypes 
latent in text.

• Recall: king - man + woman = queen
• Word embeddings trained on news corpora 

also produce:
• man - computer programmer + woman = 

homemaker
• doctor - father + mother = nurse

• Very problematic for real-world applications 
(e.g., CV/resume scoring models)
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Bias and 
Embeddings

• Caliskan et al. (2017) identified known, harmful 
implicit associations in GloVe embeddings
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African-American 
Names

European-American 
Names

Unpleasantness

Male Names Female Names

Mathematics

Male Names

Arts

Female Names

Names Common 
among Older Adults

Names Common 
among Younger Adults

Unpleasantness



How do we keep the useful associations 
present in word embeddings, but get rid of 
the harmful ones?

• Recent research has begun examining ways to 
debias word embeddings by:

• Transforming embedding spaces to remove 
gender stereotypes but preserve definitional 
gender

• Changing training procedures to eliminate these 
issues before they arise

• Increasingly active area of study:
• https://facctconference.org
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Summary: 
Word 

Embeddings

N
atalie Parde - U

IC
 C

S 421

• Word2Vec is a predictive word embedding approach 
that learns word representations by training a classifier to 
predict whether a context word should be associated 
with a given target word

• GloVe is a hybrid predictive and count-based word 
embedding approach that learns an optimized, lower-
dimensional version of a co-occurrence matrix

• Word embeddings can be evaluated through their 
incorporation in other language tasks, and they can be 
used to model syntactic and semantic properties of 
language over time

• Word embeddings may reflect the same biases found in 
the data used to train them
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